Cho các đa thức : f(x) = x^3 – 2x^2 + 3x+1
g(x) = x^3 + x – 1
h(x) = 2x^2 – 1
a, Tìm A(x) = 2f(x) + g(x)
b,Tìm B (x) biết 2B(x) + f(x) = h(x)
c,C(x) = 2g(x) = 3h(x)
Cho các đa thức : f(x) = x^3 – 2x^2 + 3x+1
g(x) = x^3 + x – 1
h(x) = 2x^2 – 1
a, Tìm A(x) = 2f(x) + g(x)
b,Tìm B (x) biết 2B(x) + f(x) = h(x)
c,C(x) = 2g(x) = 3h(x)
a) `A(x) =2f(x)+ g(x)`
` = 2(x^3 – 2x^2 + 3x+1) + (x^3 +x -1)`
`= 2x^3 – 4x^2 + 6x + 2 + x^3 + x-1`
`= (2x^3 +x^3) – 4x^2 + (6x +x) + (2-1)`
`= 3x^3 – 4x^2 + 7x +1`
b) `2B(x) + f(x) = h(x)`
`2B(x) = h(x) – f(x)`
`2B(x) = (2x^2 -1) – (x^3 – 2x^2 + 3x+1)`
`2B(x) = 2x^2 -1 – x^3 + 2x^2 – 3x -1`
`2B(x) = (2x^2 + 2x^2) – (1+1) – x^3 – 3x`
`2B(x) = 4x^2 – 2 – x^3 -3x`
`B(x) = (4x^2-2-x^3 -3x) :2`
`B(x) = 2x^2 – 1 – 1/2 x^3 – 3/2x`
c) `C(x) = 2g(x) + 3h(x)`
`= 2(x^3 + x-1) + 3(2x^2 -1)`
`= 2x^3 + 2x -2 + 6x^2 -3`
`= 2x^3 + 2x + 6x^2 – (2+3)`
`=2x^3 + 2x + 6x^2 – 5`
Đáp án + Giải thích các bước giải:
a)
`A(x)=2f(x)+g(x)=2(x^3 – 2x^2 + 3x+1)+ x^3 + x – 1`
`<=>A(x)=2x^3 – 4x^2 + 6x+2+ x^3 + x – 1`
`<=>A(x)=(2x^3+ x^3) – 4x^2 + (6x+ x)+(2 – 1)`
`<=>A(x)=3x^3- 4x^2 +7x+1`
b)
`2B(x)+f(x)=h(x)`
`<=>2B(x)=h(x)-f(x)`
`<=>B(x)=(h(x)-f(x)):2`
`<=>B(x)=[(2x^2 – 1)-(x^3 – 2x^2 + 3x+1)]:2`
`<=>B(x)=[2x^2 – 1-x^3+2x^2-3x-1]:2`
`<=>B(x)=[(2x^2+2x^2) – (1+1)-x^3-3x]:2`
`<=>B(x)=[4x^2-2-x^3-3x]1/2`
`<=>B(x)=2x^2-1-1/2 x^3-3/2x`
c)
TH1: Đề: `C(x)=2g(x) = 3h(x)`
`C(x)=2g(x) = 3h(x)`
`<=>C(x)=3h(x)`
`<=>C(x)=3(2x^2 – 1)`
`<=>C(x)=6x^2 -3`
TH2: Đề: `C(x)=2g(x)+3h(x)`
`C(x)=2g(x)+3h(x)`
`<=>C(x)=2(x^3 + x – 1)+3(2x^2 – 1)`
`<=>C(x)=2x^3 + 2x – 2+6x^2 – 3`
`<=>C(x)=2x^3 + 2x +6x^2- (2 +3)`
`<=>C(x)=2x^3 + 2x +6x^2- 5`