Cho cos x = -√3/2 ( π 21/11/2021 Bởi Elliana Cho cos x = -√3/2 ( π { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho cos x = -√3/2 ( π
Đáp án: \[A = \frac{{\sqrt 6 + 3\sqrt 2 }}{2}\] Giải thích các bước giải: Ta có: \(\begin{array}{l}\pi < x < \frac{{3\pi }}{2} \Rightarrow \left\{ \begin{array}{l}\sin \alpha < 0\\\cos \alpha < 0\end{array} \right.\\{\sin ^2}x + {\cos ^2}x = 1\\\sin x < 0 \Rightarrow \sin x = – \sqrt {1 – {{\cos }^2}x} = – \sqrt {1 – {{\left( { – \frac{{\sqrt 3 }}{2}} \right)}^2}} = – \frac{1}{2}\\A = \dfrac{{\sin 2x}}{{\sin \left( {x – \frac{\pi }{4}} \right)}} = \dfrac{{2\sin x.\cos x}}{{\sin x.\cos \frac{\pi }{4} – \cos x.\sin \frac{\pi }{4}}} = \dfrac{{2.\frac{{ – 1}}{2}.\frac{{ – \sqrt 3 }}{2}}}{{\frac{{ – 1}}{2}.\frac{{\sqrt 2 }}{2} – \frac{{ – \sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2}}} = \dfrac{{\sqrt 6 + 3\sqrt 2 }}{2}\end{array}\) Vậy \(A = \frac{{\sqrt 6 + 3\sqrt 2 }}{2}\) Bình luận
Bạn xem hình
Đáp án:
\[A = \frac{{\sqrt 6 + 3\sqrt 2 }}{2}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\pi < x < \frac{{3\pi }}{2} \Rightarrow \left\{ \begin{array}{l}
\sin \alpha < 0\\
\cos \alpha < 0
\end{array} \right.\\
{\sin ^2}x + {\cos ^2}x = 1\\
\sin x < 0 \Rightarrow \sin x = – \sqrt {1 – {{\cos }^2}x} = – \sqrt {1 – {{\left( { – \frac{{\sqrt 3 }}{2}} \right)}^2}} = – \frac{1}{2}\\
A = \dfrac{{\sin 2x}}{{\sin \left( {x – \frac{\pi }{4}} \right)}} = \dfrac{{2\sin x.\cos x}}{{\sin x.\cos \frac{\pi }{4} – \cos x.\sin \frac{\pi }{4}}} = \dfrac{{2.\frac{{ – 1}}{2}.\frac{{ – \sqrt 3 }}{2}}}{{\frac{{ – 1}}{2}.\frac{{\sqrt 2 }}{2} – \frac{{ – \sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2}}} = \dfrac{{\sqrt 6 + 3\sqrt 2 }}{2}
\end{array}\)
Vậy \(A = \frac{{\sqrt 6 + 3\sqrt 2 }}{2}\)