cho D=1/3 + 1/3^2 + 1/3^3 +…+1/3^100. So sánh D với 1/2

cho D=1/3 + 1/3^2 + 1/3^3 +…+1/3^100. So sánh D với 1/2

0 bình luận về “cho D=1/3 + 1/3^2 + 1/3^3 +…+1/3^100. So sánh D với 1/2”

  1. Đáp án:

    $\begin{array}{l}
    D = \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + … + \dfrac{1}{{{3^{100}}}}\\
     \Rightarrow 3.D = 1 + \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + … + \dfrac{1}{{{3^{99}}}}\\
     \Rightarrow 3D – D = 2D = 1 – \dfrac{1}{{{3^{100}}}}\\
     \Rightarrow D = \dfrac{1}{2} – \dfrac{1}{{{{2.3}^{100}}}} < \dfrac{1}{2}\\
    Vậy\,D < \dfrac{1}{2}
    \end{array}$

    Bình luận
  2. Ta có:

    ` D = 1/3 + \frac{1}{3^{2}} + \frac{1}{3^{3}} + … + \frac{1}{3^{100}} `

    ` <=> 3D = 1 + 1/3 + \frac{1}{3^{2}} + … + \frac{3^{99}} `

    ` <=> 3D – D = ( 1 + 1/3 + \frac{1}{3^{2}} + … + \frac{1}{3^{99}} ) – ( 1/3 + \frac{1}{3^{2}} + \frac{1}{3^{3}} + … + \frac{1}{3^{100}} ) `

    ` <=> 2D = 1 + 1/3 + \frac{1}{3^{2}} + … + \frac{3^{99}} – 1/3 – \frac{1}{3^{2}} – \frac{1}{3^{3}} – … – \frac{1}{3^{100}} `

    ` <=> 2D = 1 + (1/3 – 1/3) + ( \frac{1}{3^{2}} – \frac{1}{3^{2}} ) + … + (\frac{1}{3^{99}} – \frac{1}{3^{99}}) – \frac{1}{3^{100}} `

    ` <=> 2D = 1 – \frac{1}{3^{100}} `

    ` <=> D = \frac{1 – \frac{1}{3^{100}}}{2} `

    ` <=> D = 1/2 – \frac{1}{2.3^{100}} `

    Do: ` 1/2 – \frac{1}{2.3^{100}} < 1/2 `

    ` => D < 1/2 ` ` (đpcm) `

    Bình luận

Viết một bình luận