Cho đa thức: P(x) = 5x^4 + 3x – 2x^3 – 6 + 7x^2 Q(x) = -3x + 12x^2 + 9 – 4x^4 a, Tính P(x) + Q(x) b, Tính P(x) – Q(x) 24/08/2021 Bởi Alexandra Cho đa thức: P(x) = 5x^4 + 3x – 2x^3 – 6 + 7x^2 Q(x) = -3x + 12x^2 + 9 – 4x^4 a, Tính P(x) + Q(x) b, Tính P(x) – Q(x)
`\text{a)}` Ta có : `P(x) + Q(x) = 5x^4 + 3x – 2x^2 – 6 + 7x^2 – 3x + 12x^2 + 9 – 4x^4` `P(x) + Q(x) = (5x^4 – 4x^4) + (3x – 3x) + (-2x^2 + 12x^2) – 2x^3 + (-6 +9) ` `P(x) + Q(x) = x^4 -10x^2 – 2x^3 + 3` `\text{b)}` Ta có : `P(x) – Q(x) = 5x^4 + 3x – 2x^3 – 6 + 7x^2 + 3x – 12x^2 – 9 + 4x^4` `P(x) – Q(x) = (5x^4 + 4x^4) + (3x + 3x) – 2x^3 + (-6 – 9) + (7x^2 – 12x^2)` `P(x) – Q(x) = 9x^4 + 6x – 2x^3 – 15 – 5x^2` Bình luận
Đáp án: `text{Sắp xếp P (x) theo lũy thừa giảm dần của biến :}` `P (x) = 5x^4 – 2x^3 + 7x^2 + 3x – 6` `text{Sắp xếp Q (x) theo lũy thừa giảm dần của biến :}` `Q (x) = -4x^4 + 12x^2 – 3x + 9` $a/$ `P (x) + Q (x) = 5x^4 – 2x^3 + 7x^2 + 3x – 6 – 4x^4 + 12x^2 – 3x + 9` `-> P (x) + Q (x) = (5x^4 – 4x^4) – 2x^3 + (7x^2 + 12x^2) + (3x – 3x) + (-6 + 9)` `-> P (x) + Q (x) = x^4 – 2x^3 + 19x^2 + 3` $b/$ `P (x) – Q (x) = 5x^4 – 2x^3 + 7x^2 + 3x – 6 + 4x^4 – 12x^2 + 3x – 9` `-> P (x) – Q (x) = (5x^4 + 4x^4) – 2x^3 + (7x^2 – 12x^2) + (3x + 3x) + (-6 – 9)` `-> P (x) – Q (x) = 9x^4 – 2x^3 – 5x^2 + 6x – 15` Bình luận
`\text{a)}`
Ta có :
`P(x) + Q(x) = 5x^4 + 3x – 2x^2 – 6 + 7x^2 – 3x + 12x^2 + 9 – 4x^4`
`P(x) + Q(x) = (5x^4 – 4x^4) + (3x – 3x) + (-2x^2 + 12x^2) – 2x^3 + (-6 +9) `
`P(x) + Q(x) = x^4 -10x^2 – 2x^3 + 3`
`\text{b)}`
Ta có :
`P(x) – Q(x) = 5x^4 + 3x – 2x^3 – 6 + 7x^2 + 3x – 12x^2 – 9 + 4x^4`
`P(x) – Q(x) = (5x^4 + 4x^4) + (3x + 3x) – 2x^3 + (-6 – 9) + (7x^2 – 12x^2)`
`P(x) – Q(x) = 9x^4 + 6x – 2x^3 – 15 – 5x^2`
Đáp án:
`text{Sắp xếp P (x) theo lũy thừa giảm dần của biến :}`
`P (x) = 5x^4 – 2x^3 + 7x^2 + 3x – 6`
`text{Sắp xếp Q (x) theo lũy thừa giảm dần của biến :}`
`Q (x) = -4x^4 + 12x^2 – 3x + 9`
$a/$
`P (x) + Q (x) = 5x^4 – 2x^3 + 7x^2 + 3x – 6 – 4x^4 + 12x^2 – 3x + 9`
`-> P (x) + Q (x) = (5x^4 – 4x^4) – 2x^3 + (7x^2 + 12x^2) + (3x – 3x) + (-6 + 9)`
`-> P (x) + Q (x) = x^4 – 2x^3 + 19x^2 + 3`
$b/$
`P (x) – Q (x) = 5x^4 – 2x^3 + 7x^2 + 3x – 6 + 4x^4 – 12x^2 + 3x – 9`
`-> P (x) – Q (x) = (5x^4 + 4x^4) – 2x^3 + (7x^2 – 12x^2) + (3x + 3x) + (-6 – 9)`
`-> P (x) – Q (x) = 9x^4 – 2x^3 – 5x^2 + 6x – 15`