cho đa thức P(x) thỏa mãn x.P(x+2) = (x2 – 9) . P(x) Chứng minh P(x) có ít nhất 3 nghiệm

cho đa thức P(x) thỏa mãn x.P(x+2) = (x2 – 9) . P(x)
Chứng minh P(x) có ít nhất 3 nghiệm

0 bình luận về “cho đa thức P(x) thỏa mãn x.P(x+2) = (x2 – 9) . P(x) Chứng minh P(x) có ít nhất 3 nghiệm”

  1. Xét $x=0$ thì :

    $0.P(2) = (-9).P(0)$

    $\to P(0)=0$

    $\to x=0$ là 1 nghiệm.

    Xét $x=3$ thì :

    $3.P(5) = 0.P(3)$

    $\to P(5)=0$

    $\to x=5$ là nghiệm thứ 2 của đa thức.

    Xét $x=-3$ thì :

    $0.P(-1) = 0.P(-3)$

    $\to P(-1)=0$

    $\to x=-1$ là nghiệm thứ 3 của $P(x)$

    $\to$ đpcm.

    Bình luận

Viết một bình luận