Cho dãy số (Un) có tổng n số hạng đầu là Sn =3^n-1 Tính S=2.u1+3.u2+4.u3+…+2011.u2010 22/11/2021 Bởi Valentina Cho dãy số (Un) có tổng n số hạng đầu là Sn =3^n-1 Tính S=2.u1+3.u2+4.u3+…+2011.u2010
Ta có: `\quad S_1=u_1` `\quad S_2=u_1+u_2` `\qquad `… `\quad S_{2010}=u_1+u_2+…+u_{2010}` *`S_{2010}-S_1=u_2+u_3+…+u_{2010}` *`S_{2010}-S_2=u_3+u_4+…+u_{2010}` …. *`S_{2010}-S_{2009}=u_{2010}` Ta có: `S=2u_1+3u_2+4u_3+…+2011u_{2010}` `S=2(u_1+u_2+…+u_{2010})+(u_2+u_3+…+u_{2010})+(u_3+u_4+…+u_{2010})+…+(u_{2009}+u_{2010})+u_{2010}` `S=2S_{2010}+S_{2010}-S_1+S_{2010}-S_2+…+S_{2010}-S_{2008}+S_{2010}-S_{2009}` `S=2011S_{2010}-(S_1+S_2+..+S_{2009})` `S=2011.(3^{2010}-1)-(3^1-1+3^2-1+…+3^{2009}-1)` `S=2011.3^{2010}-2011+1.2009-(3+3^2+…+3^{2009})` `S=2011.3^{2010}-2-{3.(3^{2009}-1)}/{3-1}` `S={2.2011.3^{2010}-2.2-3^{2010}+3}/2` `S={4021.3^{2010}-1}/2` Vậy `S={4021.3^{2010}-1}/2` Bình luận
Ta có:
`\quad S_1=u_1`
`\quad S_2=u_1+u_2`
`\qquad `…
`\quad S_{2010}=u_1+u_2+…+u_{2010}`
*`S_{2010}-S_1=u_2+u_3+…+u_{2010}`
*`S_{2010}-S_2=u_3+u_4+…+u_{2010}`
….
*`S_{2010}-S_{2009}=u_{2010}`
Ta có:
`S=2u_1+3u_2+4u_3+…+2011u_{2010}`
`S=2(u_1+u_2+…+u_{2010})+(u_2+u_3+…+u_{2010})+(u_3+u_4+…+u_{2010})+…+(u_{2009}+u_{2010})+u_{2010}`
`S=2S_{2010}+S_{2010}-S_1+S_{2010}-S_2+…+S_{2010}-S_{2008}+S_{2010}-S_{2009}`
`S=2011S_{2010}-(S_1+S_2+..+S_{2009})`
`S=2011.(3^{2010}-1)-(3^1-1+3^2-1+…+3^{2009}-1)`
`S=2011.3^{2010}-2011+1.2009-(3+3^2+…+3^{2009})`
`S=2011.3^{2010}-2-{3.(3^{2009}-1)}/{3-1}`
`S={2.2011.3^{2010}-2.2-3^{2010}+3}/2`
`S={4021.3^{2010}-1}/2`
Vậy `S={4021.3^{2010}-1}/2`