CHo $\dfrac{a}{b}$ = $\dfrac{c}{d}$ CMR: $\dfrac{(a-b)^2}{(c-d)^2}$ = $\dfrac{ab}{cd}$

CHo $\dfrac{a}{b}$ = $\dfrac{c}{d}$
CMR: $\dfrac{(a-b)^2}{(c-d)^2}$ = $\dfrac{ab}{cd}$

0 bình luận về “CHo $\dfrac{a}{b}$ = $\dfrac{c}{d}$ CMR: $\dfrac{(a-b)^2}{(c-d)^2}$ = $\dfrac{ab}{cd}$”

  1. Đặt `a/b=c/d=k`

    $⇒a=b.k,\ c=d.k$

    Ta có: `VT=(a-b)^2/(c-d)^2=(bk-b)^2/(dk-d)^2=[b(k-1)^2]/[d(k-1)]^2=b^2/d^2`

    `VP=(ab)/(cd)=(bk.b)/(dk.d)=b^2/d^2`

    $⇒VT=VP$

    Vậy `(a-b)^2/(c-d)^2=(ab)/(cd)`.

    Bình luận

Viết một bình luận