Cho đường thẳng (d) y= (1-m / m+2) -x + (1-m). (m+2) â) Tìm m để (d) vuong goc (d’) y= 1/4.x+1 b) Tìm m để (d) là hàm số đồng biến

Cho đường thẳng (d) y= (1-m / m+2) -x + (1-m). (m+2)
â) Tìm m để (d) vuong goc (d’) y= 1/4.x+1
b) Tìm m để (d) là hàm số đồng biến

0 bình luận về “Cho đường thẳng (d) y= (1-m / m+2) -x + (1-m). (m+2) â) Tìm m để (d) vuong goc (d’) y= 1/4.x+1 b) Tìm m để (d) là hàm số đồng biến”

  1. \[\begin{array}{l}
    \left( d \right):\,\,\,y = \frac{{1 – m}}{{m + 2}}x + \left( {1 – m} \right)\left( {m + 2} \right)\\
    a)\,\,\,d \bot d’:\,\,\,y = \frac{1}{4}x + 1\\
    \Rightarrow \left\{ \begin{array}{l}
    \frac{{1 – m}}{{m + 2}}.\frac{1}{4} = – 1\\
    m + 2 \ne 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    1 – m = – 4m – 8\\
    m \ne – 2
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    3m = – 9\\
    m \ne – 2
    \end{array} \right. \Leftrightarrow m = – 3.\\
    b)\,\,Hs\,\,\,DB \Leftrightarrow \frac{{1 – m}}{{m + 2}} > 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    1 – m > 0\\
    m + 2 > 0
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    1 – m < 0\\ m + 2 < 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} m < 1\\ m > – 2
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    m > 1\\
    m < - 2 \end{array} \right. \end{array} \right. \Leftrightarrow - 2 < m < 1. \end{array}\]

    Bình luận

Viết một bình luận