Cho đường tròn (O; R). Từ điểm A trên (O), kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điếm M bất kì (M khác A), kẻ cát tuyến MNP, gọi K là trung điểm NP, kẻ tiếp tuyến MB, kẻ AC ⊥ MB, BD ⊥ MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. Chứng minh:
a, Bốn điểm A, M, B, O cùng thuộc một đường tròn
b, Năm điểm O, K, A, M, B cùng thuộc một đường tròn
c, OI.OM = R 2 và OI.IM = I A 2
d, O, H, M thẳng hàng
Đáp án:
1. ^OAM = ^OBM = 90* ( vì MA, MB là tiếp tuyến)
=> AMBO nội tiếp đường tròn đk OM
2. K là trung điểm PN nên OK vuông góc vs PN ( đly liên hệ giữa đk và dây cung)
=> ^OKM = 90*
=> K thuộc đường tròn đk OM
theo câu a thì O,K,A,M,B cùng nằm trên 1 đường tròn đường kính OM
3.+) tam giác AOB cân tại O và AI là phân giác của ^AOB( tính chất 2 tiếp tuyến căt nhau)
=> OI vuông góc vs AB
+) Xét tam giác vuông OAM có AI vuông góc với OM
OI. OM = OA^2 ( hệ thức lượng)
=> OI. OM = R^2
OI. OM = IA^2
4. ta có OB vuông góc vs MB và AC vuông góc vs MB
=> OB // AC hay OB // AH
tương tự BH // OA
=> OAHB là hình bình hành
mà OA = OB =R
=> OAHB là hình thoi
OAHB là hình thoi => HA = HB
=> H thuộc trung trực của AB
mà OM là trung trực của AB
=> O,H,M thẳng hàng