cho: f(x)=2x^2+ax+4 g(x)=x^2-5x-b Tìm a,b sao cho f(1)=g(2); f(-1)=g(5) giúp mik hứa vote 5 sao

cho:
f(x)=2x^2+ax+4
g(x)=x^2-5x-b
Tìm a,b sao cho f(1)=g(2); f(-1)=g(5)
giúp mik hứa vote 5 sao

0 bình luận về “cho: f(x)=2x^2+ax+4 g(x)=x^2-5x-b Tìm a,b sao cho f(1)=g(2); f(-1)=g(5) giúp mik hứa vote 5 sao”

  1. Đáp án + Giải thích các bước giải:

    `**` 

    `f(1)=g(2)`

    `->2.1^{2}+a.1+4=2^{2}-5.2-b`

    `->a+6=-6-b`

    `->a+b=-6-6`

    `->a+b=-12   (1)`

    `**`

    `f(-1)=g(5)`

    `->2.(-1)^{2}+a.(-1)+4=5^{2}-5.5-b`

    `->2-a+4=-b`

    `->6-a=-b`

    `->-a+b=-6`

    `->a-b=6    (2)`

    Cộng vế với vế `(1)` và `(2)` , ta được :

    `a+b+a-b=-12+6`

    `->2a=-6`

    `->a=-3`

    Lại có : `a+b=-12`

    `->-3+b=-12`

    `->b=-12+3=-9`

    Vậy `(a;b)=(-3;-9)`

    Bình luận
  2. Ta có: $f(1) = g(2)$

    $⇔ 2.1 + a + 4 = 4 – 10 – b$

    $⇔ 6 + a = -6 – b$

    $⇔ a = -12 – b$ (1)

    Ta có: $f(-1) = g(5)$

    $⇔ 2.1 – a + 4 = 25 – 25 – b$

    $⇔ 6 – a = -b$

    Thế (1) vào PT dưới, ta được:

    $6 – (-12 – b) = -b$

    $⇔ 6 + 12 + b + b = 0$

    $⇔ 2b = -18$

    $⇔ b =-9$

    Với $b = -9$, ta được: $a = -12-(-9) = -12 + 9 = -3$

    Vậy $a=-3$, $b=-9$

     

    Bình luận

Viết một bình luận