Cho $\frac{1}{x}$ + $\frac{1}{y}$ + $\frac{1}{z}$ =0 ( x, y, z $\neq$ 0). Tính $\frac{yz}{x^{2}}$ + $\frac{xz}{y^{2}}$ + $\frac{xy}{z^{2}}$
Cho $\frac{1}{x}$ + $\frac{1}{y}$ + $\frac{1}{z}$ =0 ( x, y, z $\neq$ 0). Tính $\frac{yz}{x^{2}}$ + $\frac{xz}{y^{2}}$ + $\frac{xy}{z^{2}}$
Đáp án:
$\sum = 3$
Giải thích các bước giải:
Ta có:
$\dfrac{1}{x} +\dfrac{1}{y} + \dfrac 1z = 0$
$\to \dfrac{xy + yz + zx}{xyz} = 0$
$\to xy + yz + zx = 0$
$\to \left(\dfrac{1}{x^2} + \dfrac{1}{y^2} + \dfrac{1}{z^2}\right)(xy + yz + zx) = 0$
$\to \dfrac{xy + yz + zx}{x^2} + \dfrac{xy + yz + zx}{y^2} + \dfrac{xy + yz + zx}{z^2} = 0$
$\to \dfrac yx + \dfrac{yz}{x^2} + \dfrac zx + \dfrac xy + \dfrac zy + \dfrac{zx}{y^2} + \dfrac{xy}{z^2} + \dfrac yz +\dfrac xz = 0$ $(*)$
Mặt khác:
$\dfrac{1}{x} +\dfrac{1}{y} + \dfrac 1z = 0$
$\to \begin{cases}1 + \dfrac xy + \dfrac xz = 0\\\dfrac yx + 1 + \dfrac yz = 0\\\dfrac zx + \dfrac zy + 1 = 0\end{cases}$
$\to \dfrac xy + \dfrac xz +\dfrac yx + \dfrac yz +\dfrac zx + \dfrac zy = -3$
Thay vào $(*)$ ta được:
$\dfrac{yz}{x^2} + \dfrac{zx}{y^2} + \dfrac{xy}{z^2} – 3 = 0$
$\to \dfrac{yz}{x^2} + \dfrac{zx}{y^2} + \dfrac{xy}{z^2} = 3$