Cho $\frac{a}{b+c}$ + $\frac{b}{c+a}$+ $\frac{c}{a+b}$ = 1 . Chứng minh rằng: $\frac{a^2}{b+c}$ + $\frac{b^2}{c+a}$+ $\frac{c^2}{a+b}$ = 0
Xin mọi người giúp mik ạ !!
Cho $\frac{a}{b+c}$ + $\frac{b}{c+a}$+ $\frac{c}{a+b}$ = 1 . Chứng minh rằng: $\frac{a^2}{b+c}$ + $\frac{b^2}{c+a}$+ $\frac{c^2}{a+b}$ = 0
Xin mọi người giúp mik ạ !!
Giải thích các bước giải:
Ta có:
$C=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}$
$\to C+(a+b+c)=(\dfrac{a^2}{b+c}+a)+(\dfrac{b^2}{c+a}+b)+(\dfrac{c^2}{a+b}+c)$
$\to C+(a+b+c)=\dfrac{a(a+b+c)}{b+c}+\dfrac{b(a+b+c)}{c+a}+\dfrac{c(a+b+c)}{a+b}$
$\to C+(a+b+c)=(a+b+c)(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b})$
$\to C+(a+b+c)=(a+b+c)\cdot 1$
$\to C+(a+b+c)=(a+b+c)$
$\to C=0$
$\to \dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0$
$\to đpcm$