Cho hai đ.thẳng: d1: 4x – my + 4 – m = 0 ; d2: (2m + 6)x + y – 2m –1 = 0 Với giá trị nào của m thì d1 song song với d2. 17/11/2021 Bởi Ayla Cho hai đ.thẳng: d1: 4x – my + 4 – m = 0 ; d2: (2m + 6)x + y – 2m –1 = 0 Với giá trị nào của m thì d1 song song với d2.
Đáp án: $m\in\{-1,-2\}$ Giải thích các bước giải: Với $m=0\to (d_1): 4x-0.y+4-0=0\to 4x+4=0$ $(d_2): (2.0+6)x+y-2.0-1=0\to 6x+y-1=0$$\to (d_1),(d_2)$ không song song Với $m\ne 0\to$ Để $(d_1)//(d_2)$$\to \begin{cases}\dfrac{2m+6}{4}=\dfrac{1}{-m}\\ 4-m\ne -2m-1\end{cases}$ $\to \begin{cases}\dfrac{m+3}{2}=-\dfrac1m\\ m\ne-5\end{cases}$ $\to \begin{cases}m^2+3m=-2\\ m\ne-5\end{cases}$ $\to \begin{cases}m^3+3m+2=0\\ m\ne-5\end{cases}$ $\to \begin{cases}(m+1)(m+2)=0\\ m\ne-5\end{cases}$ $\to \begin{cases}m\in\{-1,-2\}\\ m\ne-5\end{cases}$ $\to m\in\{-1,-2\}$ Bình luận
$(d_1)//(d_2)$ $\Leftrightarrow \frac{4}{2m+6}= \frac{-1}{1} \neq \frac{4}{-2m-1}$ ($m\neq -3; m\neq -\frac{1}{2}$) $\Leftrightarrow -2m-6=4; 2m+1\neq 4$ $\Leftrightarrow m=-5 (TM), m\neq \frac{3}{2}$ Vậy $m=-5$ Bình luận
Đáp án: $m\in\{-1,-2\}$
Giải thích các bước giải:
Với $m=0\to (d_1): 4x-0.y+4-0=0\to 4x+4=0$
$(d_2): (2.0+6)x+y-2.0-1=0\to 6x+y-1=0$
$\to (d_1),(d_2)$ không song song
Với $m\ne 0\to$ Để $(d_1)//(d_2)$
$\to \begin{cases}\dfrac{2m+6}{4}=\dfrac{1}{-m}\\ 4-m\ne -2m-1\end{cases}$
$\to \begin{cases}\dfrac{m+3}{2}=-\dfrac1m\\ m\ne-5\end{cases}$
$\to \begin{cases}m^2+3m=-2\\ m\ne-5\end{cases}$
$\to \begin{cases}m^3+3m+2=0\\ m\ne-5\end{cases}$
$\to \begin{cases}(m+1)(m+2)=0\\ m\ne-5\end{cases}$
$\to \begin{cases}m\in\{-1,-2\}\\ m\ne-5\end{cases}$
$\to m\in\{-1,-2\}$
$(d_1)//(d_2)$
$\Leftrightarrow \frac{4}{2m+6}= \frac{-1}{1} \neq \frac{4}{-2m-1}$ ($m\neq -3; m\neq -\frac{1}{2}$)
$\Leftrightarrow -2m-6=4; 2m+1\neq 4$
$\Leftrightarrow m=-5 (TM), m\neq \frac{3}{2}$
Vậy $m=-5$