Cho hai tam giác ABC và ACD có chung cạnh AC và hai đỉnh B, D nằm trong hai nửa mặt phẳng đối nhau bờ là đường thẳng AC. Đoạn thẳng AC cắt BD tại E. Biết ABD= 20 độ; BDC= 60 độ ; ACB=50 độ; ACD= 10 độ. Tính các góc của tam giác AED.
Cho hai tam giác ABC và ACD có chung cạnh AC và hai đỉnh B, D nằm trong hai nửa mặt phẳng đối nhau bờ là đường thẳng AC. Đoạn thẳng AC cắt BD tại E. Biết ABD= 20 độ; BDC= 60 độ ; ACB=50 độ; ACD= 10 độ. Tính các góc của tam giác AED.
Đáp án:
Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
g
Giải thích các bước giải: