cho hàm số f(x)=0 có f(0)=0 và f'(x)=sin(x)^2.cos4x.Khi đó tích phân từ pi/2 đến 0 của f(x) bằng 10/09/2021 Bởi Delilah cho hàm số f(x)=0 có f(0)=0 và f'(x)=sin(x)^2.cos4x.Khi đó tích phân từ pi/2 đến 0 của f(x) bằng
Đáp án: $\begin{array}{l}f’\left( x \right) = {\sin ^2}x.cos4x\\ = \dfrac{{1 – \cos 2x}}{2}.\left( {1 – 2{{\sin }^2}2x} \right)\\ = \dfrac{1}{2} – \dfrac{1}{2}.\cos 2x + {\sin ^2}2x.\cos 2x\\ \Rightarrow f\left( x \right) = \int {\left( {\dfrac{1}{2} – \dfrac{1}{2}\cos 2x + {{\sin }^2}2x.\cos 2x} \right)dx} \\ = \dfrac{1}{2}x – \dfrac{1}{4}.\sin 2x + \int {\dfrac{1}{2}.{{\sin }^2}2xd\sin 2x} \\ = \dfrac{1}{2}.x – \dfrac{1}{4}\sin 2x + \dfrac{1}{6}.{\sin ^3}2x\\ \Rightarrow \int\limits_0^{\pi /2} {f\left( x \right)dx} \\ = \int\limits_0^{\pi /2} {\left( {\dfrac{1}{2}x – \dfrac{1}{4}\sin 2x + \dfrac{1}{6}{{\sin }^3}2x} \right)dx} \\ = \left( {\dfrac{1}{4}{x^2} + \dfrac{1}{8}\cos 2x} \right)_0^{\pi /2} + \dfrac{1}{{12}}.\int\limits_0^{\pi /2} {{{\sin }^2}2x.sin2x.d2x} \\ = \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{8} – \dfrac{1}{8} + \dfrac{1}{{12}}.\int\limits_0^{\pi /2} {\left( {{{\cos }^2}2x – 1} \right).d\left( {\cos 2x} \right)} \\ = \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{4} + \dfrac{1}{{12}}.\left( {\dfrac{1}{3}{{\cos }^3}2x – \cos 2x} \right)_0^{\pi /2}\\ = \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{4} + \dfrac{1}{{12}}.\left( {\dfrac{2}{3} + \dfrac{2}{3}} \right)\\ = \dfrac{{{\pi ^2}}}{{16}} – \dfrac{5}{{36}}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
f’\left( x \right) = {\sin ^2}x.cos4x\\
= \dfrac{{1 – \cos 2x}}{2}.\left( {1 – 2{{\sin }^2}2x} \right)\\
= \dfrac{1}{2} – \dfrac{1}{2}.\cos 2x + {\sin ^2}2x.\cos 2x\\
\Rightarrow f\left( x \right) = \int {\left( {\dfrac{1}{2} – \dfrac{1}{2}\cos 2x + {{\sin }^2}2x.\cos 2x} \right)dx} \\
= \dfrac{1}{2}x – \dfrac{1}{4}.\sin 2x + \int {\dfrac{1}{2}.{{\sin }^2}2xd\sin 2x} \\
= \dfrac{1}{2}.x – \dfrac{1}{4}\sin 2x + \dfrac{1}{6}.{\sin ^3}2x\\
\Rightarrow \int\limits_0^{\pi /2} {f\left( x \right)dx} \\
= \int\limits_0^{\pi /2} {\left( {\dfrac{1}{2}x – \dfrac{1}{4}\sin 2x + \dfrac{1}{6}{{\sin }^3}2x} \right)dx} \\
= \left( {\dfrac{1}{4}{x^2} + \dfrac{1}{8}\cos 2x} \right)_0^{\pi /2} + \dfrac{1}{{12}}.\int\limits_0^{\pi /2} {{{\sin }^2}2x.sin2x.d2x} \\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{8} – \dfrac{1}{8} + \dfrac{1}{{12}}.\int\limits_0^{\pi /2} {\left( {{{\cos }^2}2x – 1} \right).d\left( {\cos 2x} \right)} \\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{4} + \dfrac{1}{{12}}.\left( {\dfrac{1}{3}{{\cos }^3}2x – \cos 2x} \right)_0^{\pi /2}\\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{4} + \dfrac{1}{{12}}.\left( {\dfrac{2}{3} + \dfrac{2}{3}} \right)\\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{5}{{36}}
\end{array}$