cho ham so y=1/3(m^2-1)x^3+(m-1)x^2-2x+1.gia tri m de y’-2x-2>0 voi moi thuoc R 25/10/2021 Bởi Savannah cho ham so y=1/3(m^2-1)x^3+(m-1)x^2-2x+1.gia tri m de y’-2x-2>0 voi moi thuoc R
Giải thích các bước giải: Ta có: \(\begin{array}{l}y = \frac{1}{3}\left( {{m^2} – 1} \right){x^3} + \left( {m – 1} \right){x^2} – 2x + 1\\ \Rightarrow y’ = \frac{1}{3}.\left( {{m^2} – 1} \right).3{x^2} + \left( {m – 1} \right).2x – 2\\ \Leftrightarrow y’ = \left( {{m^2} – 1} \right){x^2} + 2\left( {m – 1} \right)x – 2\\y’ – 2x – 2 > 0,\,\,\,\,\forall x \in R\\ \Leftrightarrow \left( {{m^2} – 1} \right){x^2} + 2\left( {m – 1} \right)x – 2 – 2x – 2 > 0,\,\,\,\,\forall x \in R\\ \Leftrightarrow \left( {{m^2} – 1} \right){x^2} + 2\left( {m – 2} \right)x – 4 > 0,\,\,\,\,\forall x \in R\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} – 1 > 0\\\Delta ‘ < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < – 1\end{array} \right.\\{\left( {m – 2} \right)^2} – \left( {{m^2} – 1} \right).\left( { – 4} \right) < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < – 1\end{array} \right.\\{m^2} – 4m + 4 + 4{m^2} – 4 < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < – 1\end{array} \right.\\5{m^2} – 4m < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < – 1\end{array} \right.\\0 < m < \frac{4}{5}\end{array} \right.\\ \Rightarrow vn\end{array}\) Vậy không tìm được giá trị của \(m\) thỏa mãn yêu cầu bài toán. Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
y = \frac{1}{3}\left( {{m^2} – 1} \right){x^3} + \left( {m – 1} \right){x^2} – 2x + 1\\
\Rightarrow y’ = \frac{1}{3}.\left( {{m^2} – 1} \right).3{x^2} + \left( {m – 1} \right).2x – 2\\
\Leftrightarrow y’ = \left( {{m^2} – 1} \right){x^2} + 2\left( {m – 1} \right)x – 2\\
y’ – 2x – 2 > 0,\,\,\,\,\forall x \in R\\
\Leftrightarrow \left( {{m^2} – 1} \right){x^2} + 2\left( {m – 1} \right)x – 2 – 2x – 2 > 0,\,\,\,\,\forall x \in R\\
\Leftrightarrow \left( {{m^2} – 1} \right){x^2} + 2\left( {m – 2} \right)x – 4 > 0,\,\,\,\,\forall x \in R\\
\Leftrightarrow \left\{ \begin{array}{l}
{m^2} – 1 > 0\\
\Delta ‘ < 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m > 1\\
m < – 1
\end{array} \right.\\
{\left( {m – 2} \right)^2} – \left( {{m^2} – 1} \right).\left( { – 4} \right) < 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m > 1\\
m < – 1
\end{array} \right.\\
{m^2} – 4m + 4 + 4{m^2} – 4 < 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m > 1\\
m < – 1
\end{array} \right.\\
5{m^2} – 4m < 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m > 1\\
m < – 1
\end{array} \right.\\
0 < m < \frac{4}{5}
\end{array} \right.\\
\Rightarrow vn
\end{array}\)
Vậy không tìm được giá trị của \(m\) thỏa mãn yêu cầu bài toán.