Cho hệ phương trình 2mx -5y = -2 5x – 2my = 4-4m tìm m để hpt có nghiệm duy nhất 14/10/2021 Bởi Athena Cho hệ phương trình 2mx -5y = -2 5x – 2my = 4-4m tìm m để hpt có nghiệm duy nhất
Đáp án: \(m \ne \pm \dfrac{5}{2}\) Giải thích các bước giải: \(\begin{array}{l}\left\{ \begin{array}{l}2mx – 5y = – 2\\5x – 2my = 4 – 4m\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \dfrac{{2mx + 2}}{5}\\5x – 2m.\dfrac{{2mx + 2}}{5} = 4 – 4m\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \dfrac{{2mx + 2}}{5}\\25x – 4{m^2}x – 4m = 20 – 20m\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \dfrac{{2mx + 2}}{5}\\\left( {25 – 4{m^2}} \right)x = 20 – 16m\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \dfrac{{2mx + 2}}{5} = \dfrac{{2m.\dfrac{{20 – 16m}}{{25 – 4{m^2}}} + 2}}{5}\\x = \dfrac{{20 – 16m}}{{25 – 4{m^2}}}\end{array} \right.\\ \to \left\{ \begin{array}{l}x = \dfrac{{20 – 16m}}{{25 – 4{m^2}}}\\y = \dfrac{{40m – 32{m^2} + 50 – 8{m^2}}}{{5\left( {25 – 4{m^2}} \right)}}\end{array} \right.\\ \to \left\{ \begin{array}{l}x = \dfrac{{20 – 16m}}{{25 – 4{m^2}}}\\y = \dfrac{{ – 40{m^2} + 90}}{{5\left( {25 – 4{m^2}} \right)}}\end{array} \right.\\DK:25 – 4{m^2} \ne 0\\ \to m \ne \pm \dfrac{5}{2}\end{array}\) Bình luận
Đáp án:
\(m \ne \pm \dfrac{5}{2}\)
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
2mx – 5y = – 2\\
5x – 2my = 4 – 4m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \dfrac{{2mx + 2}}{5}\\
5x – 2m.\dfrac{{2mx + 2}}{5} = 4 – 4m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \dfrac{{2mx + 2}}{5}\\
25x – 4{m^2}x – 4m = 20 – 20m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \dfrac{{2mx + 2}}{5}\\
\left( {25 – 4{m^2}} \right)x = 20 – 16m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \dfrac{{2mx + 2}}{5} = \dfrac{{2m.\dfrac{{20 – 16m}}{{25 – 4{m^2}}} + 2}}{5}\\
x = \dfrac{{20 – 16m}}{{25 – 4{m^2}}}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = \dfrac{{20 – 16m}}{{25 – 4{m^2}}}\\
y = \dfrac{{40m – 32{m^2} + 50 – 8{m^2}}}{{5\left( {25 – 4{m^2}} \right)}}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = \dfrac{{20 – 16m}}{{25 – 4{m^2}}}\\
y = \dfrac{{ – 40{m^2} + 90}}{{5\left( {25 – 4{m^2}} \right)}}
\end{array} \right.\\
DK:25 – 4{m^2} \ne 0\\
\to m \ne \pm \dfrac{5}{2}
\end{array}\)