Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc . Biết SA=a , SB=b , SC=c . Tính khoảng cách từ S đến mặt phẳng SAB theo a,b, c

Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc . Biết SA=a , SB=b , SC=c . Tính khoảng cách từ S đến mặt phẳng SAB theo a,b, c

0 bình luận về “Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc . Biết SA=a , SB=b , SC=c . Tính khoảng cách từ S đến mặt phẳng SAB theo a,b, c”

  1. Đáp án:

    $d(S;(ABC))=\dfrac{abc}{\sqrt{a^2b^2 + b^2c^2 + c^2a^2}}$

    Giải thích các bước giải:

    Sửa đề: Tính $d(S;(ABC))$

    Ta có công thức tính nhanh khoảng cách từ giao điểm 3 đường vuông góc đến mặt đối diện:

    $\dfrac{1}{d^2(S;(ABC))} = \dfrac{1}{SA^2} + \dfrac{1}{SB^2} + \dfrac{1}{SC^2}$

    $\Rightarrow \dfrac{1}{d^2(S;(ABC))} = \dfrac{1}{a^2}+\dfrac{1}{b^2} + \dfrac{1}{c^2}$

    $\Rightarrow d(S;(ABC))=\dfrac{abc}{\sqrt{a^2b^2 + b^2c^2 + c^2a^2}}$

    Bình luận

Viết một bình luận