Cho hình chóp SABC có đáy là tam giác vuông cân tại B . AB= a , SA vuông với đáy vs SB tạo với đáy 1 góc 60 độ . Khoảng cách từ A đến (SBC) là

Cho hình chóp SABC có đáy là tam giác vuông cân tại B . AB= a , SA vuông với đáy vs SB tạo với đáy 1 góc 60 độ . Khoảng cách từ A đến (SBC) là

0 bình luận về “Cho hình chóp SABC có đáy là tam giác vuông cân tại B . AB= a , SA vuông với đáy vs SB tạo với đáy 1 góc 60 độ . Khoảng cách từ A đến (SBC) là”

  1. Đáp án:

    $d(A;(SBC)) = \dfrac{a\sqrt3}{2}$

    Giải thích các bước giải:

    Ta có:

    $ΔABC$ vuông cân tại $A$ cạnh $AB = a$

    $\Rightarrow S_{ABC} = \dfrac{a^2}{2}$

    Bên cạnh đó:

    $SA\perp (ABC)$

    $\Rightarrow \widehat{(SB;(ABC))} = \widehat{SBA} = 60^o$

    $\Rightarrow \begin{cases}SA = AB.\tan60^o = a\sqrt3\\SB = \dfrac{AB}{\cos60^o} = 2a\end{cases}$

    $\Rightarrow V_{S.ABC} = \dfrac{1}{3}S_{ABC}.SA = \dfrac{1}{3}\cdot\dfrac{a^2}{2}\cdot a\sqrt3 = \dfrac{a^3\sqrt3}{6}$

    Mặt khác:

    $CB\perp AB$

    $CB\perp SA \quad (SA\perp (ABC))$

    $\Rightarrow CB\perp (SAB)$

    $\Rightarrow CB\perp SB$

    $\Rightarrow S_{SCB} = \dfrac{1}{2}CB.SB = \dfrac{1}{2}.a.2a = a^2$

    Ta có:

    $V_{A.SBC} = \dfrac{1}{3}S_{SBC}.d(A;(SBC))$

    $\Leftrightarrow d(A;(SBC)) = \dfrac{3V_{A.SBC}}{S_{SBC}} = \dfrac{3V_{S.ABC}}{S_{SBC}}$

    $\Leftrightarrow d(A;(SBC)) = \dfrac{3\cdot\dfrac{a^3\sqrt3}{6}}{a^2} = \dfrac{a\sqrt3}{2}$

    Bình luận

Viết một bình luận