Cho hình chữ nhật ABCD có AB=4cm, BC=3cm. a. tính BD b. Qua B vẽ đường thẳng vuông góc với BD, cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F

Cho hình chữ nhật ABCD có AB=4cm, BC=3cm.
a. tính BD
b. Qua B vẽ đường thẳng vuông góc với BD, cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. CMR 2 tam giác BCD và CFB đồng dạng
c.Tính CF
d.Gọi O là giao điểm của AC và BD. Nối OE cắt CF ở I.CMR I là trung điểm của CF.

0 bình luận về “Cho hình chữ nhật ABCD có AB=4cm, BC=3cm. a. tính BD b. Qua B vẽ đường thẳng vuông góc với BD, cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F”

  1. Cậu tham khảo

    Ta có: CF ⊥ BE

              BD ⊥ BE

    ⇒ CF // BD ( Quan hệ từ vuông góc đến song song)

    Xét ΔOEB có IF//OB

    ⇒$\frac{IC}{OD}$= $\frac{EI}{EO}$ 

    Xét ΔOED có IC//OD

    ⇒$\frac{IC}{OD}$= $\frac{EI}{EO}$ (2)

    Từ (1) và (2) ⇒$\frac{IC}{OD}$=$\frac{IC}{OD}$

    Mà lại có OB=OD

    ⇒IC=IF

    ⇒I là trung điểm

    Bình luận
  2. Ta có: CF ⊥ BE

              BD ⊥ BE

    ⇒ CF // BD ( Quan hệ từ vuông góc đến song song)

    Xét ΔOEB có IF//OB

        ⇒ $\frac{IF}{OB}$ =$\frac{EI}{EO}$ (Hệ quả định lí Ta-lét) (1)

    Xét ΔOED có IC//OD

        ⇒ $\frac{IC}{OD}$ =$\frac{EI}{EO}$ (Hệ quả định lí Ta-lét) ) (2)

    Từ (1),(2) ⇒ $\frac{IF}{OB}$= $\frac{IC}{OD}$ (=$\frac{EI}{EO}$)

    Mà OB=OD (Do ABCD là hình chữ nhật)

    ⇒ IC=IF

    I là trung điểm của CF (đpcm)

      

    Bình luận

Viết một bình luận