Cho hình chữ nhật ABCD có AB bằng 16 cm BC = 12 cm gọi H là chân đường vuông góc kẻ từ A đến B D a, chứng minh tam giác ahb đồng dạng với tam giác BCD

Cho hình chữ nhật ABCD có AB bằng 16 cm BC = 12 cm gọi H là chân đường vuông góc kẻ từ A đến B D a, chứng minh tam giác ahb đồng dạng với tam giác BCD b; tính AH. c,Tính diện tích tam giác AHB
.
Giúp mình giải đúng vote 5 sao và ctlhn nữa

0 bình luận về “Cho hình chữ nhật ABCD có AB bằng 16 cm BC = 12 cm gọi H là chân đường vuông góc kẻ từ A đến B D a, chứng minh tam giác ahb đồng dạng với tam giác BCD”

  1. Đáp án:

     

    Giải thích các bước giải:

     a) Xét Δ AHB và Δ BCD , ta có

        AHB = BCD = 90 độ

        ABH = BDC ( SLT ; AB// CD )

    ⇒ Δ AHB đồng dạng Δ BCD

    b)Xét Δ vuông ADB , ta có 

    AB² + AD² = BD²

    ⇒ BD² = 16² + 12² = 400 ⇒ BD = 20 cm

    Δ AHB đồng dạng Δ BCD

    ⇒ $\frac{AH}{BC}$ = $\frac{AB}{BD}$ 

    ⇒ AH = BC . AB : BD = 12 . 16 : 20 = 9,6 cm

    c ) Xét Δ vuông AHB , ta có 

    AH²+ HB² = AB²

    ⇒ HB² = AB² – AH² = 16² – 9,6² = 163,84 ⇒ HB = 12,8 cm 

    SΔAHB = $\frac{1}{2}$  . AH . HB = $\frac{1}{2}$ . 9,6 . 12,8 = 61,44 cm²

    Bình luận

Viết một bình luận