Cho hình vuông ABCD. Lấy điểm E trên cạnh BC, lấy điểm F trên tia đối của tia DC sao cho BE = DF. a, Chứng minh tam giác ABE = tam giác ADF b, Cho G là trung điểm của EF, H là điểm đối xứng với A qua G. Chứng minh AEHF là hình vuông. c, Chứng minh tam giác ACH vuông. d, Gọi I là trọng tâm tam giác AEF. Chứng minh rằng khi E, F thay đổi vị trí nhưng vẫn thỏa mãn đề bài thì diện tích IBD luôn không đổi.
Đáp án:
Xét 2 tam giác ABE và ADF
AB= AD
BE= DF
Góc ADF= gÓC ABE=90⁰
=> Tam giác ABE= Tam giác ADF( C.G.C)
=> AE= AF ( 2 cạnh tương ứng)
Tứ giác AEHF có
G Là giao điểm 2 đường chéo
AG= HG
EG=FG
Hơn nữa Có 2 cạnh kề bằng nhau
AE= AF
=> tứ giác AEHF là hình vuông
Ta có góc ECA= góc ACF= góc FCH( Nhìn canhn AE=AF=FH
=> Góc ECF= góc ECA+ góc ACH=90⁰
Góc ACH= góc ACF+góc FCH
mà góc FCH= góc ECA
=> Góc ACH= góc ACF+góc FCH=90⁰
=> tam giác ACH vuông tại C
EF thay đổi nhưng G là trọng tâm EF k thay đổi
AI=23AG23AG=> I không thay đổi
=> Tam giác IBD có diện tích không thay đổi khi EF thay đổi
Giải thích các bước giải:
Đáp án:
Giải thích các bước giải:
Xét 2 tam giác ABE và ADF
AB= AD
BE= DF
Góc ADF= gÓC ABE=90⁰
=> Tam giác ABE= Tam giác ADF( C.G.C)
=> AE= AF ( 2 cạnh tương ứng)
Tứ giác AEHF có
G Là giao điểm 2 đường chéo
AG= HG
EG=FG
Hơn nữa Có 2 cạnh kề bằng nhau
AE= AF
=> tứ giác AEHF là hình vuông
Ta có góc ECA= góc ACF= góc FCH( Nhìn canhn AE=AF=FH
=> Góc ECF= góc ECA+ góc ACH=90⁰
Góc ACH= góc ACF+góc FCH
mà góc FCH= góc ECA
=> Góc ACH= góc ACF+góc FCH=90⁰
=> tam giác ACH vuông tại C
EF thay đổi nhưng G là trọng tâm EF k thay đổi
AI=\(\frac{2}{3}AG\)=> I không thay đổi
=> Tam giác IBD có diện tích không thay đổi khi EF thay đổi