Cho khối chóp SABCD có đáy là hình vuông tâm O. Biết khối chóp S.AOB có thể tích là 2a3 . Tính the tích khối chóp S. ABCD

Cho khối chóp SABCD có đáy là hình vuông tâm O. Biết khối chóp S.AOB có thể tích là 2a3 . Tính the tích khối chóp S. ABCD

0 bình luận về “Cho khối chóp SABCD có đáy là hình vuông tâm O. Biết khối chóp S.AOB có thể tích là 2a3 . Tính the tích khối chóp S. ABCD”

  1. Khối chóp $S.ABCD$ và $S.AOB$ chung chiều cao hạ từ $S$.

    $O$ là tâm hình vuông $ABCD$

    $\Rightarrow S_{AOB}=OA.OB=\dfrac{1}{2}OA.\dfrac{1}{2}OB=\dfrac{1}{4}OA.OB=\dfrac{1}{4}S_{ABCD}$

    $\Rightarrow \dfrac{V_{S.ABCD}}{V_{S.AOB}}=\dfrac{\dfrac{1}{3}S_{ABCD}.d(S;(ABCD))}{\dfrac{1}{3}S_{AOB}.d(S;(ABCD))}=4$

    $\to V_{S.ABCD}=4.2a^3=8a^3$

    Bình luận
  2. Ta có

    $$V_{S.ABCD} = V_{S.AOB} + V_{S.BOC} + V_{S.COD} + V_{S.DOA}$$

    $$= \dfrac{1}{3} d(S, (AOB)) . S_{AOB} + \dfrac{1}{3} d(S, (BOC)) . S_{BOC} + \dfrac{1}{3} d(S, (COD)). S_{COD} + \dfrac{1}{3} d(S, (DOA)) . S_{DOA}$$

    $$= \dfrac{1}{3} d(S, (ABCD)) . S_{AOB} + \dfrac{1}{3} d(S, (ABCD)) . S_{BOC} + \dfrac{1}{3} d(S, (ABCD)). S_{COD} + \dfrac{1}{3} d(S, (ABCD)) . S_{DOA}$$

    $$= \dfrac{1}{3} d(S, (ABCD)) .(S_{AOB} + S_{BOC} + S_{COD} + S_{DOA})$$

    Do O là tâm của hình vuông ABCD nên ta có

    $$S_{AOB} = S_{BOC} = S_{COD} = S_{DOA}$$

    Vậy ta có

    $$V_{S.ABCD} = \dfrac{1}{3} d(S, (ABCD)) . 4 S_{AOB}$$

    $$= 4. \dfrac{1}{3} d(S, (ABCD)) . S_{AOB}$$

    $$ = 4 V_{S.AOB}$$

    Vậy $V_{S.ABCD} = 4.2a^3 = 8a^3$.

    Bình luận

Viết một bình luận