Cho N= căn x/ căn x+ 2 +4 căn x/ x-4 với x > hoặc bằng 0; x khác 4 27/07/2021 Bởi Valentina Cho N= căn x/ căn x+ 2 +4 căn x/ x-4 với x > hoặc bằng 0; x khác 4 a) Thu gọn N b) Tính x khi N=2
a) $N = \dfrac{\sqrt x}{\sqrt x + 2} + \dfrac{4 \sqrt x}{x -4} (Đk: x \geq 0; x \neq 4)$ $= \dfrac{\sqrt x}{\sqrt x + 2} + \dfrac{4\sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$ $ = \dfrac{\sqrt x(\sqrt x -2) + 4\sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$ $=\dfrac{x – 2 \sqrt x + 4\sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$ $=\dfrac{x + 2 \sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$ $=\dfrac{\sqrt x(\sqrt x + 2)}{(\sqrt x + 2)(\sqrt x – 2)}$ $=\dfrac{\sqrt x}{\sqrt x -2 }$ b) Khi $N = 2$ thì $\dfrac{\sqrt x }{\sqrt x – 2} = 2$ ⇔ $\sqrt x = 2(\sqrt x – 2)$ ⇔ $\sqrt x = 2\sqrt x – 4$ ⇔ $\sqrt x = 4$ ⇒ $x = 16 (T/m)$ Bình luận
a/ $\dfrac{\sqrt x}{\sqrt x+2}+\dfrac{4\sqrt x}{x-4}\\=\dfrac{\sqrt x(\sqrt x-2)}{(\sqrt x-2)(\sqrt x+2)}+\dfrac{4\sqrt x}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{x-2\sqrt x+4\sqrt 2}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{x+2\sqrt x}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{\sqrt x(\sqrt x+2)}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{\sqrt x}{\sqrt x-2}(x≥0;x\ne 0)$ b/ $N=2\\→\dfrac{\sqrt x}{\sqrt x-2}=2\\↔\sqrt x=2\sqrt x-4\\↔\sqrt x-2\sqrt x=-4\\↔-\sqrt x=-4\\↔\sqrt x=4\\↔x=16(TM)$ Vậy $N=2$ khi $x=16$ Bình luận
a) $N = \dfrac{\sqrt x}{\sqrt x + 2} + \dfrac{4 \sqrt x}{x -4} (Đk: x \geq 0; x \neq 4)$
$= \dfrac{\sqrt x}{\sqrt x + 2} + \dfrac{4\sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$
$ = \dfrac{\sqrt x(\sqrt x -2) + 4\sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$
$=\dfrac{x – 2 \sqrt x + 4\sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$
$=\dfrac{x + 2 \sqrt x}{(\sqrt x + 2)(\sqrt x – 2)}$
$=\dfrac{\sqrt x(\sqrt x + 2)}{(\sqrt x + 2)(\sqrt x – 2)}$
$=\dfrac{\sqrt x}{\sqrt x -2 }$
b) Khi $N = 2$ thì $\dfrac{\sqrt x }{\sqrt x – 2} = 2$
⇔ $\sqrt x = 2(\sqrt x – 2)$
⇔ $\sqrt x = 2\sqrt x – 4$
⇔ $\sqrt x = 4$
⇒ $x = 16 (T/m)$
a/ $\dfrac{\sqrt x}{\sqrt x+2}+\dfrac{4\sqrt x}{x-4}\\=\dfrac{\sqrt x(\sqrt x-2)}{(\sqrt x-2)(\sqrt x+2)}+\dfrac{4\sqrt x}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{x-2\sqrt x+4\sqrt 2}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{x+2\sqrt x}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{\sqrt x(\sqrt x+2)}{(\sqrt x-2)(\sqrt x+2)}\\=\dfrac{\sqrt x}{\sqrt x-2}(x≥0;x\ne 0)$
b/ $N=2\\→\dfrac{\sqrt x}{\sqrt x-2}=2\\↔\sqrt x=2\sqrt x-4\\↔\sqrt x-2\sqrt x=-4\\↔-\sqrt x=-4\\↔\sqrt x=4\\↔x=16(TM)$
Vậy $N=2$ khi $x=16$