cho n điểm phân biệt vẽ các đoạn thẳng nối hai trong n điểm đó hỏi có tất cả bao nhiêu đoạn thẳng
0 bình luận về “cho n điểm phân biệt vẽ các đoạn thẳng nối hai trong n điểm đó hỏi có tất cả bao nhiêu đoạn thẳng”
Đáp án:
Giải thích các bước giải:
Mỗi điểm $n$ sẽ nối với các điểm $n$ còn lại , ta sẽ được số đường thẳng bằng số điểm còn lại. Vì $2$ điểm sẽ tạo thành $1$ đoạn thẳng nên số đoạn thẳng bị lặp đi $2$ lần . Với $n$ điểm , ta được số đđoạn thẳng là : $\dfrac{n(n-1)}{2}$ đoạn thẳng
Mỗi điểm n sẽ nối với các điểm n còn lại , ta sẽ được số đừng thẳng bằng số điểm còn lại. Vì 2 điểm được 1 đoạn thẳng nên số đoạn thẳng bị lặp đi 2 lần . Và cứ làm thế với n điểm , ta sẽ được số đường thẳng là : `\frac{n(n-1)}{2} ` ( đoạn thẳng )
Đáp án:
Giải thích các bước giải:
Mỗi điểm $n$ sẽ nối với các điểm $n$ còn lại , ta sẽ được số đường thẳng bằng số điểm còn lại. Vì $2$ điểm sẽ tạo thành $1$ đoạn thẳng nên số đoạn thẳng bị lặp đi $2$ lần . Với $n$ điểm , ta được số đđoạn thẳng là : $\dfrac{n(n-1)}{2}$ đoạn thẳng
Mỗi điểm n sẽ nối với các điểm n còn lại , ta sẽ được số đừng thẳng bằng số điểm còn lại. Vì 2 điểm được 1 đoạn thẳng nên số đoạn thẳng bị lặp đi 2 lần . Và cứ làm thế với n điểm , ta sẽ được số đường thẳng là : `\frac{n(n-1)}{2} ` ( đoạn thẳng )