cho n thuộc N và n chia hết cho 3 chứng tỏ n^2 chia 3 dư 1 cảm ơn những ai đã giúp đỡ mình 24/07/2021 Bởi Serenity cho n thuộc N và n chia hết cho 3 chứng tỏ n^2 chia 3 dư 1 cảm ơn những ai đã giúp đỡ mình
bạn ghi sai đề rồi nhé!mình viết đề lại nè! cho n thuộc N và n không chia hết cho 3 chứng tỏ n^2 chia 3 dư 1 Giải Vì n không chia hết cho 3 nên n chia 3 dư 1 hoặc 2 ⇒n có dạng 3k+1;3k+2 (k ∈N) Nếu n có dạng 3k+1⇒ $n^{2}$ =(3k+1)(3k+1)= (3k+1)3k+3k+1=3k.3k+3k+3k+1 Nxét:3k.3k+3k+3k+1 chia 3 dư 1 vì 3k.3k+3k+3k chia hết cho 3 và 1 chia 3 dư 1 (1) Nếu n có dạng 3k+2⇒ $n^{2}$ =(3k+2)(3k+2)= (3k+2)3k+(3k+2)2=3k.3k+2.3k +3k.2 +4 Nxét:3k.3k+2.3k +3k.2 +4 chia 3 dư 1 vì 3k.3k+2.3k +3k.2 chia hết cho 3 và 4 chia 3 dư 1 (2) Từ (1);(2)⇒Nếu n không chia hết cho 3 thì $n^{2}$ chia 3 dư 1(đpcm) Bình luận
Nếu n⋮ 3 thì n²⋮ 3 Vì vậy bài này xét với n không chi hết cho 3 Trường hợp 1: n chia 3 dư 1 ⇒ n có dạng là 3k+1( k∈ N) Ta có: n²=( 3k+1)²= 9k²+6k+1=3.(3k²+2k)+1 ⇒ n² chia 3 dư 1 (1) Trường hợp 2: n chia 3 dư 2 ⇒ n có dạng 3k+2 Ta có: n²=( 3k+2)²=9k²+12k+4=3.( 3k²+4k+1)+1 ⇒ n² chia 3 dư 1 (2) Từ (1) và (2) ⇒ với n không chia hết cho 3 thì n² chia 3 dư 1 Bình luận
bạn ghi sai đề rồi nhé!mình viết đề lại nè!
cho n thuộc N và n không chia hết cho 3 chứng tỏ n^2 chia 3 dư 1
Giải
Vì n không chia hết cho 3 nên n chia 3 dư 1 hoặc 2 ⇒n có dạng 3k+1;3k+2 (k ∈N)
Nếu n có dạng 3k+1⇒ $n^{2}$ =(3k+1)(3k+1)= (3k+1)3k+3k+1=3k.3k+3k+3k+1
Nxét:3k.3k+3k+3k+1 chia 3 dư 1 vì 3k.3k+3k+3k chia hết cho 3 và 1 chia 3 dư 1 (1)
Nếu n có dạng 3k+2⇒ $n^{2}$ =(3k+2)(3k+2)= (3k+2)3k+(3k+2)2=3k.3k+2.3k +3k.2 +4
Nxét:3k.3k+2.3k +3k.2 +4 chia 3 dư 1 vì 3k.3k+2.3k +3k.2 chia hết cho 3 và 4 chia 3 dư 1 (2)
Từ (1);(2)⇒Nếu n không chia hết cho 3 thì $n^{2}$ chia 3 dư 1(đpcm)
Nếu n⋮ 3 thì n²⋮ 3
Vì vậy bài này xét với n không chi hết cho 3
Trường hợp 1: n chia 3 dư 1
⇒ n có dạng là 3k+1( k∈ N)
Ta có: n²=( 3k+1)²= 9k²+6k+1=3.(3k²+2k)+1
⇒ n² chia 3 dư 1 (1)
Trường hợp 2: n chia 3 dư 2
⇒ n có dạng 3k+2
Ta có: n²=( 3k+2)²=9k²+12k+4=3.( 3k²+4k+1)+1
⇒ n² chia 3 dư 1 (2)
Từ (1) và (2) ⇒ với n không chia hết cho 3 thì n² chia 3 dư 1