Cho P ( x ) =2³-2x+x²-x³+3x+2 Và Q(x) =4x³-5x²+x-4x+3x³+4x²+1 A. Tính P(x) +Q(x) , P(x) -Q(x) B .Tính P(1) , Q(2) 21/09/2021 Bởi Arya Cho P ( x ) =2³-2x+x²-x³+3x+2 Và Q(x) =4x³-5x²+x-4x+3x³+4x²+1 A. Tính P(x) +Q(x) , P(x) -Q(x) B .Tính P(1) , Q(2)
Tham khảo ` a)` `1) P(x)+Q(x)=2^3-2x+x^2-x^3+3x+2+(4x^3-5x^2+x-4x+3x^3+4x^2+1)` `⇒P(x)+Q(x)=8+x+x^2-x^3+2+7x^3-x^2-3x+1` `⇒P(x)+Q(x)=11-2x+6x^3` `2) Q(x)-Q(x)=2^3-2x+x^2-x^3+3x+2-(4x^3-5x^2+x-4x+3x^3+4x^2+1)` `⇒P(x)-Q(x)=8+x+x^2-x^3+2-(7x^3-x^2-3x+1)` `⇒P(x)-Q(x)=8+x+x^2-x^3+2-7x^3+x^2+3x-1` `⇒P(x)-Q(x)=9+4x+2x^2-8x^3` `b) ` `1) P(1)=8+x+x^2-x^3+2` `⇒P(1)=8+1+1^2-1^3+2` `⇒P(1)=11` `2) Q(2)=7x^3-x^2-3x+1` `⇒Q(2)=7.2^3-2^2-3.2+1` `⇒Q(2)=7.8-4+6+1` `⇒Q(2)=61` `\text{©CBT}` Bình luận
Đáp án: Giải thích các bước giải: ta có: P(x)=2³-2x+x²-x³+3x+2 =10+x+x²-x³ Q(x)=4x³-5x²+x-4x+3x³+4x²+1 =1-3x-x²+7x³ A. P(x)+Q(x)=(10+x+x²-x³)+(1-3x-x²+7x³) =10+x+x²-x³+1-3x-x²+7x³ =(10+1)+(x-3x)+(x²-x²)-(x³+7x³) =11-2x+6x³ P(x)-Q(x)=(10+x+x²-x³)-(1-3x-x²+7x³) =10+x+x²-x³-1+3x+x²-7x³ =(10-1)+(x+3x)+(x²+x²)-(x³+7x³) =9+4x+2x²-8x³ B. P(1)=10+1+1²-1 =11 Q(2)=1-3.2-2²+7.2³ =1-6-4+56 =47 Bình luận
Tham khảo
` a)`
`1) P(x)+Q(x)=2^3-2x+x^2-x^3+3x+2+(4x^3-5x^2+x-4x+3x^3+4x^2+1)`
`⇒P(x)+Q(x)=8+x+x^2-x^3+2+7x^3-x^2-3x+1`
`⇒P(x)+Q(x)=11-2x+6x^3`
`2) Q(x)-Q(x)=2^3-2x+x^2-x^3+3x+2-(4x^3-5x^2+x-4x+3x^3+4x^2+1)`
`⇒P(x)-Q(x)=8+x+x^2-x^3+2-(7x^3-x^2-3x+1)`
`⇒P(x)-Q(x)=8+x+x^2-x^3+2-7x^3+x^2+3x-1`
`⇒P(x)-Q(x)=9+4x+2x^2-8x^3`
`b) `
`1) P(1)=8+x+x^2-x^3+2`
`⇒P(1)=8+1+1^2-1^3+2`
`⇒P(1)=11`
`2) Q(2)=7x^3-x^2-3x+1`
`⇒Q(2)=7.2^3-2^2-3.2+1`
`⇒Q(2)=7.8-4+6+1`
`⇒Q(2)=61`
`\text{©CBT}`
Đáp án:
Giải thích các bước giải:
ta có:
P(x)=2³-2x+x²-x³+3x+2
=10+x+x²-x³
Q(x)=4x³-5x²+x-4x+3x³+4x²+1
=1-3x-x²+7x³
A.
P(x)+Q(x)=(10+x+x²-x³)+(1-3x-x²+7x³)
=10+x+x²-x³+1-3x-x²+7x³
=(10+1)+(x-3x)+(x²-x²)-(x³+7x³)
=11-2x+6x³
P(x)-Q(x)=(10+x+x²-x³)-(1-3x-x²+7x³)
=10+x+x²-x³-1+3x+x²-7x³
=(10-1)+(x+3x)+(x²+x²)-(x³+7x³)
=9+4x+2x²-8x³
B. P(1)=10+1+1²-1
=11
Q(2)=1-3.2-2²+7.2³
=1-6-4+56
=47