Cho P(x) = 2x^2 + 3 ; Q(x) = -x^3 + 2x^2 – x + 2. Tìm đa thức R(x) sao cho P(x) – Q(x) – R(x) = 0 Giup minh nho!!! 31/07/2021 Bởi Valentina Cho P(x) = 2x^2 + 3 ; Q(x) = -x^3 + 2x^2 – x + 2. Tìm đa thức R(x) sao cho P(x) – Q(x) – R(x) = 0 Giup minh nho!!!
$Giải$ $P(x) – Q(x) – R(x)=0$ $=>R(x)= P(x)-(Q(x)+0)$$=>R(x)=$ $(2x^{2}+3)$ – $[(-1x)^{3}+$ $2x^{2}-x+2+0]$ $=>R(x)=$ $(2x^{2}+3)-$$(-1x)^{3}+$ $2x^{2}-x+2$$=>R(x)=$ $2x^{2}+3+$$1x^{3}-$ $2x^{2}+x-2$$=>R(x)=$ $(2x^{2}-$ $2x^{2})$ $+$ $(3-2)$ $+1x^{3}$ $+x$ $=>R(x)=$ $1$ $+1x^{3}$ $+x$ $=>R(x)=$ $x^{3}$ $+x$ $+1$$Vậy$ $R(x)=$ $x^{3}$ $+x$ $+1$ Bình luận
Ta có: P(x) – Q(x) – R(x) = 0 ⇒ P(x) – Q(x) = R(x) mà P(x) = 2x² + 3 ; Q(x) = -x³ + 2x² – x + 2 ⇒ 2x² + 3 – ( -x³ + 2x² – x + 2 ) = R (x) ⇒ R(x) = 2x² + 3 – ( -x³ + 2x² – x + 2 ) ⇒ R(x) = 2x² + 3 + x³ – 2x² + x – 2 ⇒ R(x) = x³ + (2x² – 2x²) + x + (3 – 2) ⇒ R(x) = x³ + x + 1 Vậy R(x) = x³ + x + 1 Bình luận
$Giải$
$P(x) – Q(x) – R(x)=0$
$=>R(x)= P(x)-(Q(x)+0)$
$=>R(x)=$ $(2x^{2}+3)$ – $[(-1x)^{3}+$ $2x^{2}-x+2+0]$
$=>R(x)=$ $(2x^{2}+3)-$$(-1x)^{3}+$ $2x^{2}-x+2$
$=>R(x)=$ $2x^{2}+3+$$1x^{3}-$ $2x^{2}+x-2$
$=>R(x)=$ $(2x^{2}-$ $2x^{2})$ $+$ $(3-2)$ $+1x^{3}$ $+x$
$=>R(x)=$ $1$ $+1x^{3}$ $+x$
$=>R(x)=$ $x^{3}$ $+x$ $+1$
$Vậy$ $R(x)=$ $x^{3}$ $+x$ $+1$
Ta có: P(x) – Q(x) – R(x) = 0
⇒ P(x) – Q(x) = R(x)
mà P(x) = 2x² + 3 ;
Q(x) = -x³ + 2x² – x + 2
⇒ 2x² + 3 – ( -x³ + 2x² – x + 2 ) = R (x)
⇒ R(x) = 2x² + 3 – ( -x³ + 2x² – x + 2 )
⇒ R(x) = 2x² + 3 + x³ – 2x² + x – 2
⇒ R(x) = x³ + (2x² – 2x²) + x + (3 – 2)
⇒ R(x) = x³ + x + 1
Vậy R(x) = x³ + x + 1