Cho P= Cos^4 a + Sin^4 a với a lớn hơn 0 độ và nhỏ 90 độ. Tìm a để P min và tính gái trị nhỏ nhất đó 17/07/2021 Bởi Peyton Cho P= Cos^4 a + Sin^4 a với a lớn hơn 0 độ và nhỏ 90 độ. Tìm a để P min và tính gái trị nhỏ nhất đó
$P=cos^4a+sin^4a$ $=(cos^2a+sin^2a)^2-2sin^2acos^2a$ $=1-\dfrac{1}{2}sin^22a$ Ta có: $-1≤sin2a≤1$ $→ 0≤sin^22a≤1$ $↔ 0≥-\dfrac{1}{2}sin^22a≥-\dfrac{1}{2}$ $↔ 1≥1-\dfrac{1}{2}sin^22a≥\dfrac{1}{2}$ $→ P_{min}=\dfrac{1}{2}$ xảy ra khi: $sin2a=±1 ↔ a=±\dfrac{\pi}{4}+k\pi$ ($k∈\mathbb{Z}$) Vì $0^o<a<90^o$ nên $a=\dfrac{\pi}{4}$ Bình luận
$P=cos^4a+sin^4a$
$=(cos^2a+sin^2a)^2-2sin^2acos^2a$
$=1-\dfrac{1}{2}sin^22a$
Ta có:
$-1≤sin2a≤1$
$→ 0≤sin^22a≤1$
$↔ 0≥-\dfrac{1}{2}sin^22a≥-\dfrac{1}{2}$
$↔ 1≥1-\dfrac{1}{2}sin^22a≥\dfrac{1}{2}$
$→ P_{min}=\dfrac{1}{2}$ xảy ra khi:
$sin2a=±1 ↔ a=±\dfrac{\pi}{4}+k\pi$ ($k∈\mathbb{Z}$)
Vì $0^o<a<90^o$ nên $a=\dfrac{\pi}{4}$