Cho (P) y=2x ² và (d): y= 3x-m Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt $x_{1},x_{2}$ thoả $x_{1}-2x_{2}=6$

Cho (P) y=2x ² và (d): y= 3x-m
Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt $x_{1},x_{2}$ thoả $x_{1}-2x_{2}=6$

0 bình luận về “Cho (P) y=2x ² và (d): y= 3x-m Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt $x_{1},x_{2}$ thoả $x_{1}-2x_{2}=6$”

  1. Lập pt hoành độ giao điểm (P) và (d) ta có:

    `2x^2=3x-m`

    `<=> 2x^2-3x+m=0`

    `\Delta=(-3)^2-4.m.2`

    `\Delta=9-8m`

    Để pt có 2 nghiệm phân biệt

    `<=> \Delta>0`

    `=> 9-8m>0`

    `<=> m<9/8`

    Với `m<9/8` thì pt có 2 nghiệm phân biệt

    Theo Viet: $\begin{cases} x_1+x_2=\dfrac{3}{2} (1) \\ x_1.x_2=\dfrac{m}{2} (2)\end{cases}$

    Theo đề ra có: `x_1-2x_2=6 (3)`

    Từ `(1)(3)` ta có hệ pt:

    $\begin{cases} x_1+x_2=\dfrac{3}{2}\\ x_1-2x_2=6 \end{cases}$

    $⇔ \begin{cases} x_1+x_2=\dfrac{3}{2}\\3x_2=\dfrac{-9}{2}\end{cases}$

    $⇔\begin{cases} x_1+\dfrac{-3}{2}=\dfrac{3}{2}\\x_2=\dfrac{-3}{2}\end{cases}$

    $⇔\begin{cases}x_1=3\\x_2=\dfrac{-3}{2} \end{cases}$

    Thay `x_1=3; x_2=-3/2` vào (2) ta có

    `3. (-3/2)=m/2`

    `<=> -9/2=m/2`

    `<=> m=-9(tm)`

    Vậy `m=-9` thì (P) và (d) cắt nhau tại 2 điểm phân biệt có `x_1;x_2` thỏa mãn `x_1-2x_2=6` 

    Bình luận

Viết một bình luận