Cho P(x) ∈ Z[x] Chứng Minh Rằng: không tồn tại a,b,c ∈ Z (a$\neq$b$\neq$c) sao cho P(a)=b P(b)=c P(c)=a

Cho P(x) ∈ Z[x]
Chứng Minh Rằng:
không tồn tại a,b,c ∈ Z (a$\neq$b$\neq$c) sao cho
P(a)=b
P(b)=c
P(c)=a

0 bình luận về “Cho P(x) ∈ Z[x] Chứng Minh Rằng: không tồn tại a,b,c ∈ Z (a$\neq$b$\neq$c) sao cho P(a)=b P(b)=c P(c)=a”

  1. Đáp án:

     

    Giải thích các bước giải: PP phản chứng

    Đặt $: P(x) = a_{n}x^{n} + a_{n- 1}x^{n- 1} + …+ a_{1}x +  a_{0} ( n ∈ N; a_{i} ∈ Z)$

    Giả sử tồn tại $ a, b, c ∈ Z( a\neq b ; b\neq c; c\neq a)$ sao cho : 

    $ P(a) = b ⇔ a_{n}a^{n} + a_{n – 1}a^{n – 1} + …+ a_{1}a +  a_{0} = b  (1)$

    $ P(b) = c ⇔ a_{n}b^{n} + a_{n – 1}b^{n – 1} + …+ a_{1}b +  a_{0} = c  (2)$

    $ P(c) = a ⇔ a_{n}c^{n} + a_{n – 1}c^{n – 1} + …+ a_{1}c +  a_{0} = a  (3)$

    Lấy $(1) – (2):$

    $ a_{n}(a^{n} – b^{n}) +  a_{n – 1}(a^{n – 1} – b^{n – 1}) +…+ a_{1}(a – b) = b – c$

    $ ⇔ x(a – b) = b – c (4) (x ∈ Z)$

    Tương tự lấy $(2) – (3); (3) – (1)$ ta có :

    $ y(b – c) = c – a (5) ; z(c – a) = a – b (6) ( y, z ∈ Z)$

    Lấy $(4).(5).(6) :$

    $xyz(a – b)(b – c)(c – a) = (a – b)(b – c)(c – a) ⇔ xyz = 1$

    Vì $ x; y; z ∈ Z$ và $x; y; z $ có vai trò bình đẳng nên xét 2 trường hợp:

    @ TH1 $ : x = y = z = 1$ thay vào $(4); (5); (6)$

    $ ⇒ a – b = b – c = c – a ⇒ a = b = c$

    trái với GT $ a\neq b ; b\neq c; c\neq a$ 

    @ TH2 $ : x = y = – 1; z = 1$ thay vào $(4); (5); (6)$

    $ ⇒ b – a = b – c; c – b = c – a; c – a = a – b ⇔ a = b = c$

    trái với GT $: a\neq b ; b\neq c; c\neq a$ 

    Vậy ko tồn tại $ a, b, c ∈ Z( a\neq b ; b\neq c; c\neq a)$ sao cho : 

    $P(a) = b; P(b) = c; P(c) = a$

     

    Bình luận

Viết một bình luận