Cho phương trình: x² + (2m-6)x+m-13=0
Tìm m để phương trình có 2 nghiệm x1,x2 Thỏa mãn
a) x1x2-x1²-x²=-3
b) x1<3 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho phương trình: x² + (2m-6)x+m-13=0
Tìm m để phương trình có 2 nghiệm x1,x2 Thỏa mãn
a) x1x2-x1²-x²=-3
b) x1<3 0 , , forall m cr & Rightarrow Pt , ,luon , ,co , ,2 , ,nghiem , ,phan , ,biet. cr & Ap , ,dung , ,dinh , ,li , ,Vi - et: , , left { matrix{ {x_1} + {x_2} = 6 - 2m hfill cr {x_1}{x_2} = m - 13 hfill cr} right. cr & a) , ,{x_1}{x_2} - x_1^2 - x_2^2 = - 3 cr & Leftrightarrow {x_1}{x_2} - { left( {{x_1} + {x_2}} right)^2} + 2{x_1}{x_2} = - 3 cr & Leftrightarrow 3{x_1}{x_2} - { left( {{x_1} + {x_2}} right)^2} = - 3 cr & Leftrightarrow 3 left( {m - 13} right) - { left( {6 - 2m} right)^2} = - 3 cr & Leftrightarrow 3m - 39 - 4{m^2} + 24m - 36 = - 3 cr & Leftrightarrow 4{m^2} - 27m + 72 = 0 , , left( {Vo , ,nghiem} right) cr & Rightarrow Khong , ,co , ,m , ,thoa , ,man. cr & b) , ,{x_1} 0 hfill cr} right. Leftrightarrow left( {{x_1} - 3} right) left( {{x_2} - 3} right)", "upvoteCount": 0, "dateCreated": "9/18/2021 11:01:51 PM", "url": "https://mtrend.vn/cho-phuong-trinh-2m-6-m-13-0-tim-m-de-phuong-trinh-co-2-nghiem-1-2-thoa-man-a-12-1-3-b-1-3-2-c-1-237/#comment-414859", "author": { "@type": "Person", "url" : "https://mtrend.vn/author/haiyen", "name": "haiyen" } } ] } }
Đáp án:
a) Không có m.
b) \(m < {{22} \over 7}\) c) Không có m.
Giải thích các bước giải:
\(\eqalign{
& {x^2} + \left( {2m – 6} \right)x + m – 13 = 0 \cr
& \Delta = {\left( {2m – 6} \right)^2} – 4\left( {m – 13} \right) \cr
& \,\,\,\, = 4{m^2} – 24m + 36 – 4m + 52 \cr
& \,\,\,\, = 4{m^2} – 28m + 88 > 0\,\,\forall m \cr
& \Rightarrow Pt\,\,luon\,\,co\,\,2\,\,nghiem\,\,phan\,\,biet. \cr
& Ap\,\,dung\,\,dinh\,\,li\,\,Vi – et:\,\,\left\{ \matrix{
{x_1} + {x_2} = 6 – 2m \hfill \cr
{x_1}{x_2} = m – 13 \hfill \cr} \right. \cr
& a)\,\,{x_1}{x_2} – x_1^2 – x_2^2 = – 3 \cr
& \Leftrightarrow {x_1}{x_2} – {\left( {{x_1} + {x_2}} \right)^2} + 2{x_1}{x_2} = – 3 \cr
& \Leftrightarrow 3{x_1}{x_2} – {\left( {{x_1} + {x_2}} \right)^2} = – 3 \cr
& \Leftrightarrow 3\left( {m – 13} \right) – {\left( {6 – 2m} \right)^2} = – 3 \cr
& \Leftrightarrow 3m – 39 – 4{m^2} + 24m – 36 = – 3 \cr
& \Leftrightarrow 4{m^2} – 27m + 72 = 0\,\,\left( {Vo\,\,nghiem} \right) \cr
& \Rightarrow Khong\,\,co\,\,m\,\,thoa\,\,man. \cr
& b)\,\,{x_1} < 3 < {x_2} \cr & \Leftrightarrow \left\{ \matrix{ {x_1} - 3 < 0 \hfill \cr {x_2} - 3 > 0 \hfill \cr} \right. \Leftrightarrow \left( {{x_1} – 3} \right)\left( {{x_2} – 3} \right) < 0 \cr & \Leftrightarrow {x_1}{x_2} - 3\left( {{x_1} + {x_2}} \right) + 9 < 0 \cr & \Leftrightarrow m - 13 - 3\left( {6 - 2m} \right) + 9 < 0 \cr & \Leftrightarrow m - 13 - 18 + 6m + 9 < 0 \cr & \Leftrightarrow 7m - 22 < 0 \Leftrightarrow m < {{22} \over 7} \cr & c)\,\,{x_1} - 3{x_2} = 5 \cr & \Leftrightarrow {x_1} = 3{x_2} + 5 \cr & \Rightarrow {x_1} + {x_2} = 4{x_2} + 5 = 6 - 2m \cr & \Leftrightarrow 4{x_2} = 1 - 2m \Leftrightarrow {x_2} = {{1 - 2m} \over 4} \cr & \Rightarrow {x_1} = {{3 - 6m} \over 4} + 5 = {{23 - 6m} \over 4} \cr & {x_1}{x_2} = m - 13 \cr & \Leftrightarrow {{23 - 6m} \over 4}{{1 - 2m} \over 4} = m - 13 \cr & \Leftrightarrow 23 - 46m - 6m + 12{m^2} = 4m - 52 \cr & \Leftrightarrow 12{m^2} - 56m + 75 = 0\,\,\left( {Vo\,\,nghiem} \right) \cr & \Rightarrow Khong\,\,co\,\,m\,\,thoa\,\,man. \cr} \)