Cho phương trình: (m+2)x² – 2(2m-1)x + 3m -4 = 0 (1)
a) Giải phương trình khi m = 1
b) Tìm tất cả giá trị nguyên của m để (1) có 2 nghiệm phân biệt x1,x2 trong đó có một nghiêm là số nguyên âm
Cho phương trình: (m+2)x² – 2(2m-1)x + 3m -4 = 0 (1)
a) Giải phương trình khi m = 1
b) Tìm tất cả giá trị nguyên của m để (1) có 2 nghiệm phân biệt x1,x2 trong đó có một nghiêm là số nguyên âm
Đáp án:
$\begin{array}{l}
a)m = 1\\
\Leftrightarrow 3{x^2} – 2x – 1 = 0\\
\Leftrightarrow \left( {3x + 2} \right)\left( {x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{ – 2}}{3}\\
x = 1
\end{array} \right.\\
Vậy\,x = – \dfrac{2}{3};x = 1\,khi:m = 1
\end{array}$
b) Phương trình có 2 nghiệm phân biệt thì:
$\begin{array}{l}
\left\{ \begin{array}{l}
m\# – 2\\
\Delta ‘ > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m\# – 2\\
{\left( {2m – 1} \right)^2} – \left( {m + 2} \right)\left( {3m – 4} \right) > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m\# – 2\\
4{m^2} – 4m + 1 – 3{m^2} – 2m + 8 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m\# – 2\\
{m^2} – 6m + 9 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m\# – 2\\
{\left( {m – 3} \right)^2} > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m\# – 2\\
m\# 3
\end{array} \right.
\end{array}$
$Theo\,Viet:\left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2\left( {2m – 1} \right)}}{{m + 2}}\\
{x_1}{x_2} = \dfrac{{3m – 4}}{{m + 2}}
\end{array} \right.$
Để có 1 nghiệm âm thì có 2 TH xảy ra:
+ 2 nghiệm cùng âm
$\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2\left( {2m – 1} \right)}}{{m + 2}} < 0\\
{x_1}{x_2} = \dfrac{{3m – 4}}{{m + 2}} > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
– 2 < m < \dfrac{1}{2}\\
\left[ \begin{array}{l}
m > \dfrac{4}{3}\\
m < – 2
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow m \in \emptyset
\end{array}$
+ 1 nghiệm âm
$\begin{array}{l}
\Leftrightarrow {x_1} < 0 \le {x_2}\\
\Leftrightarrow {x_1}{x_2} \le 0\\
\Leftrightarrow \dfrac{{3m – 4}}{{m + 2}} \le 0\\
\Leftrightarrow – 2 < m \le \dfrac{4}{3}\\
Vậy\, – 2 < m \le \dfrac{4}{3}
\end{array}$