Cho Q=(√a/√a+1 – 1/a-√a):(1/√a+1 + 2/a-1) A.rút gọn Q B.tìm Q khi a=3+2√2 C.tìm a để Q âm 08/08/2021 Bởi Rose Cho Q=(√a/√a+1 – 1/a-√a):(1/√a+1 + 2/a-1) A.rút gọn Q B.tìm Q khi a=3+2√2 C.tìm a để Q âm
Đáp án: b. \(\dfrac{{2\sqrt 2 + 2}}{{3\sqrt 2 + 4}}\) Giải thích các bước giải: \(\begin{array}{l}a.DK:a \ge 0;a \ne 1\\Q = \left( {\dfrac{{\sqrt a }}{{\sqrt a + 1}} – \dfrac{1}{{a – \sqrt a }}} \right):\left( {\dfrac{1}{{\sqrt a + 1}} + \dfrac{2}{{a – 1}}} \right)\\ = \left[ {\dfrac{{a\left( {\sqrt a – 1} \right) – \sqrt a – 1}}{{\sqrt a \left( {a – 1} \right)}}} \right]:\left[ {\dfrac{{\sqrt a – 1 + 2}}{{a – 1}}} \right]\\ = \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{\sqrt a \left( {a – 1} \right)}}.\dfrac{{a – 1}}{{\sqrt a + 1}}\\ = \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{\sqrt a \left( {\sqrt a + 1} \right)}} = \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{a + \sqrt a }}\\b.Thay:a = 3 + 2\sqrt 2 = 2 + 2\sqrt 2 + 1\\ = {\left( {\sqrt 2 + 1} \right)^2}\\ \to Q = \dfrac{{\left( {3 + 2\sqrt 2 } \right)\sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} – 3 – 2\sqrt 2 – \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} – 1}}{{3 + 2\sqrt 2 + \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} }}\\ = \dfrac{{\left( {3 + 2\sqrt 2 } \right)\left( {\sqrt 2 + 1} \right) – 3 – 2\sqrt 2 – \sqrt 2 – 1 – 1}}{{3 + 2\sqrt 2 + \sqrt 2 + 1}}\\ = \dfrac{{3\sqrt 2 + 3 + 4 + 2\sqrt 2 – 3\sqrt 2 – 5}}{{3\sqrt 2 + 4}}\\ = \dfrac{{2\sqrt 2 + 2}}{{3\sqrt 2 + 4}}\\c.Q < 0\\ \to \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{\sqrt a \left( {\sqrt a + 1} \right)}} < 0\\ \to a\sqrt a – a – \sqrt a – 1 < 0\\\left( {Do:\sqrt a \left( {\sqrt a + 1} \right) > 0\forall a \ge 0} \right)\\ \to \sqrt a < 1,839286755\\ \to 0 \le a < 3,382975767;a \ne 1\end{array}\) Bình luận
Đáp án:
b. \(\dfrac{{2\sqrt 2 + 2}}{{3\sqrt 2 + 4}}\)
Giải thích các bước giải:
\(\begin{array}{l}
a.DK:a \ge 0;a \ne 1\\
Q = \left( {\dfrac{{\sqrt a }}{{\sqrt a + 1}} – \dfrac{1}{{a – \sqrt a }}} \right):\left( {\dfrac{1}{{\sqrt a + 1}} + \dfrac{2}{{a – 1}}} \right)\\
= \left[ {\dfrac{{a\left( {\sqrt a – 1} \right) – \sqrt a – 1}}{{\sqrt a \left( {a – 1} \right)}}} \right]:\left[ {\dfrac{{\sqrt a – 1 + 2}}{{a – 1}}} \right]\\
= \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{\sqrt a \left( {a – 1} \right)}}.\dfrac{{a – 1}}{{\sqrt a + 1}}\\
= \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{\sqrt a \left( {\sqrt a + 1} \right)}} = \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{a + \sqrt a }}\\
b.Thay:a = 3 + 2\sqrt 2 = 2 + 2\sqrt 2 + 1\\
= {\left( {\sqrt 2 + 1} \right)^2}\\
\to Q = \dfrac{{\left( {3 + 2\sqrt 2 } \right)\sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} – 3 – 2\sqrt 2 – \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} – 1}}{{3 + 2\sqrt 2 + \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} }}\\
= \dfrac{{\left( {3 + 2\sqrt 2 } \right)\left( {\sqrt 2 + 1} \right) – 3 – 2\sqrt 2 – \sqrt 2 – 1 – 1}}{{3 + 2\sqrt 2 + \sqrt 2 + 1}}\\
= \dfrac{{3\sqrt 2 + 3 + 4 + 2\sqrt 2 – 3\sqrt 2 – 5}}{{3\sqrt 2 + 4}}\\
= \dfrac{{2\sqrt 2 + 2}}{{3\sqrt 2 + 4}}\\
c.Q < 0\\
\to \dfrac{{a\sqrt a – a – \sqrt a – 1}}{{\sqrt a \left( {\sqrt a + 1} \right)}} < 0\\
\to a\sqrt a – a – \sqrt a – 1 < 0\\
\left( {Do:\sqrt a \left( {\sqrt a + 1} \right) > 0\forall a \ge 0} \right)\\
\to \sqrt a < 1,839286755\\
\to 0 \le a < 3,382975767;a \ne 1
\end{array}\)