cho S=1+1/2+1/3+1/4+….+1/2^2017 Chứng minh S > 1009

cho S=1+1/2+1/3+1/4+….+1/2^2017
Chứng minh S > 1009

0 bình luận về “cho S=1+1/2+1/3+1/4+….+1/2^2017 Chứng minh S > 1009”

  1. Lời giải:

    Ta có:

    $S=1+(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^{2017}})>1+(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+…+\frac{1}{2^{2017}.(2^{2017}+1)})$
    Lại có:
    $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+…+\frac{1}{2^{2017}.(2^{2017}+1)}=\frac{2^{2017}}{2^{2017}+1}$~$1$
    =>$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+…+\frac{1}{2^{2017}.(2^{2017}+1)}=\frac{2^{2017}}{2^{2017}+1}$~$1-\frac{1}{2}$~$\frac{1}{2}$
    $=>S>1+\frac{1}{2}>\frac{3}{2}$
    Mà:$\frac{3}{2}>\frac{10}{9}$
    =>$S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^{2017}}>\frac{10}{9}(đpcm)$

    Bình luận

Viết một bình luận