Cho S= 1/2 + 1/3 + 1/4 + … + 1/48 + 1/49 + 1/50 và P=1/49 + 2/48 + 3/47 + … +48/2 + 49/1 Tính $\frac{S}{P}$ 22/09/2021 Bởi Arianna Cho S= 1/2 + 1/3 + 1/4 + … + 1/48 + 1/49 + 1/50 và P=1/49 + 2/48 + 3/47 + … +48/2 + 49/1 Tính $\frac{S}{P}$
Đáp án: $\dfrac{1}{50}$ Giải thích các bước giải: $P= \dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+…+\dfrac{48}{2}+49$ $= \left ( 1+\dfrac{1}{49} \right )+\left ( 1+\dfrac{2}{48} \right )+\left ( 1+\dfrac{3}{47} \right )+…+\left (1+\dfrac{48}{2} \right )+1$ $= \dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+…+\dfrac{50}{2}+\dfrac{50}{50}$ $= 50\left ( \dfrac{1}{49}+\dfrac{1}{48}+…+\dfrac{1}{2}+\dfrac{1}{50} \right )$ $= 50S$ Bình luận
Đáp án: $\dfrac{1}{50}$
Giải thích các bước giải:
$P= \dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+…+\dfrac{48}{2}+49$
$= \left ( 1+\dfrac{1}{49} \right )+\left ( 1+\dfrac{2}{48} \right )+\left ( 1+\dfrac{3}{47} \right )+…+\left (1+\dfrac{48}{2} \right )+1$
$= \dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+…+\dfrac{50}{2}+\dfrac{50}{50}$
$= 50\left ( \dfrac{1}{49}+\dfrac{1}{48}+…+\dfrac{1}{2}+\dfrac{1}{50} \right )$
$= 50S$