Cho sin a = 3/5 với π/2 < a < π Tính sin 2a , cos 2a , tan 2a , cot ( a - π/4 ) , sin a/2 , cos a/2 Cảm ơn trc❤ 17/09/2021 Bởi Josephine Cho sin a = 3/5 với π/2 < a < π Tính sin 2a , cos 2a , tan 2a , cot ( a - π/4 ) , sin a/2 , cos a/2 Cảm ơn trc❤
Giải thích các bước giải: Do: $\sin a = \dfrac{3}{5}$; $\dfrac{\pi }{2} < a < \pi $ $ \Rightarrow \cos a < 0$ $ \Rightarrow \cos a = – \sqrt {1 – {{\sin }^2}a} = \dfrac{{ – 4}}{5}$ Khi đó: $\begin{array}{l} + )\sin 2a = 2\sin a\cos a = 2.\dfrac{3}{5}.\left( {\dfrac{{ – 4}}{5}} \right) = \dfrac{{ – 24}}{{25}}\\ + )\cos 2a = {\cos ^2}a – {\sin ^2}a = {\left( {\dfrac{{ – 4}}{5}} \right)^2} – {\left( {\dfrac{3}{5}} \right)^2} = \dfrac{7}{{25}}\\ + )\tan 2a = \dfrac{{\sin 2a}}{{\cos 2a}} = \dfrac{{\dfrac{{ – 24}}{{25}}}}{{\dfrac{7}{{25}}}} = \dfrac{{ – 24}}{7}\\ + )\cot \left( {a – \dfrac{\pi }{4}} \right)\\ = \dfrac{1}{{\tan \left( {a – \dfrac{\pi }{4}} \right)}}\\ = \dfrac{{1 + \tan a.\tan \dfrac{\pi }{4}}}{{\tan a – \tan \dfrac{\pi }{4}}}\\ = \dfrac{{1 + \dfrac{{\sin a}}{{\cos a}}.1}}{{\dfrac{{\sin a}}{{\cos a}} – 1}}\\ = \dfrac{{1 + \dfrac{{3/5}}{{ – 4/5}}}}{{\dfrac{{3/5}}{{ – 4/5}}}}\\ = \dfrac{{1 – \dfrac{3}{4}}}{{\dfrac{{ – 3}}{4}}}\\ = \dfrac{1}{4}.\dfrac{4}{{ – 3}}\\ = \dfrac{{ – 1}}{3}\\ + )\dfrac{\pi }{2} < a < \pi \Rightarrow \dfrac{\pi }{4} < \dfrac{a}{2} < \dfrac{\pi }{2}\\ \Rightarrow \sin \dfrac{a}{2} > 0\\ \Rightarrow \sin \dfrac{a}{2} = \sqrt {\dfrac{{1 – \cos a}}{2}} = \dfrac{3}{{\sqrt {10} }}\\ \Rightarrow \cos \dfrac{a}{2} = \dfrac{{\sin a}}{{2\sin \dfrac{a}{2}}} = \dfrac{1}{{\sqrt {10} }}\end{array}$ Bình luận
Giải thích các bước giải:
Do:
$\sin a = \dfrac{3}{5}$; $\dfrac{\pi }{2} < a < \pi $
$ \Rightarrow \cos a < 0$
$ \Rightarrow \cos a = – \sqrt {1 – {{\sin }^2}a} = \dfrac{{ – 4}}{5}$
Khi đó:
$\begin{array}{l}
+ )\sin 2a = 2\sin a\cos a = 2.\dfrac{3}{5}.\left( {\dfrac{{ – 4}}{5}} \right) = \dfrac{{ – 24}}{{25}}\\
+ )\cos 2a = {\cos ^2}a – {\sin ^2}a = {\left( {\dfrac{{ – 4}}{5}} \right)^2} – {\left( {\dfrac{3}{5}} \right)^2} = \dfrac{7}{{25}}\\
+ )\tan 2a = \dfrac{{\sin 2a}}{{\cos 2a}} = \dfrac{{\dfrac{{ – 24}}{{25}}}}{{\dfrac{7}{{25}}}} = \dfrac{{ – 24}}{7}\\
+ )\cot \left( {a – \dfrac{\pi }{4}} \right)\\
= \dfrac{1}{{\tan \left( {a – \dfrac{\pi }{4}} \right)}}\\
= \dfrac{{1 + \tan a.\tan \dfrac{\pi }{4}}}{{\tan a – \tan \dfrac{\pi }{4}}}\\
= \dfrac{{1 + \dfrac{{\sin a}}{{\cos a}}.1}}{{\dfrac{{\sin a}}{{\cos a}} – 1}}\\
= \dfrac{{1 + \dfrac{{3/5}}{{ – 4/5}}}}{{\dfrac{{3/5}}{{ – 4/5}}}}\\
= \dfrac{{1 – \dfrac{3}{4}}}{{\dfrac{{ – 3}}{4}}}\\
= \dfrac{1}{4}.\dfrac{4}{{ – 3}}\\
= \dfrac{{ – 1}}{3}\\
+ )\dfrac{\pi }{2} < a < \pi \Rightarrow \dfrac{\pi }{4} < \dfrac{a}{2} < \dfrac{\pi }{2}\\
\Rightarrow \sin \dfrac{a}{2} > 0\\
\Rightarrow \sin \dfrac{a}{2} = \sqrt {\dfrac{{1 – \cos a}}{2}} = \dfrac{3}{{\sqrt {10} }}\\
\Rightarrow \cos \dfrac{a}{2} = \dfrac{{\sin a}}{{2\sin \dfrac{a}{2}}} = \dfrac{1}{{\sqrt {10} }}
\end{array}$