Cho sinx + cosx = m Tính A = $sin^{3}$ + $cos^{3}$ B = $sin^{4}$ + $cos^{4}$ theo m

Cho sinx + cosx = m
Tính A = $sin^{3}$ + $cos^{3}$
B = $sin^{4}$ + $cos^{4}$ theo m

0 bình luận về “Cho sinx + cosx = m Tính A = $sin^{3}$ + $cos^{3}$ B = $sin^{4}$ + $cos^{4}$ theo m”

  1. $\quad \sin x + \cos x = m$

    $\Rightarrow (\sin x +\cos x)^2 = m^2$

    $\Rightarrow 1 + 2\sin x\cos x = m^2$

    $\Rightarrow \sin x\cos x =\dfrac{m^2 -1}{2}$

    Ta được:

    $+)\quad A = \sin^3x +\cos^3x$

    $\to A = (\sin x +\cos x)^3 – 3\sin x\cos x(\sin x + \cos x)$

    $\to A = m^3 – 3\cdot \dfrac{m^2 – 1}{2}\cdot m$

    $\to A = \dfrac{3m – m^3}{2}$

    $+)\quad B = \sin^4x +\cos^4x$

    $\to B = (\sin^2x + \cos^2x)^2 – 2\sin^2x\cos^2x$

    $\to B = 1 – 2\cdot \left(\dfrac{m^2 -1}{2}\right)^2$

    $\to B = \dfrac{3 – m^2}{2}$

    Bình luận
  2. $\sin x+\cos x=m\to \sin^2x+\cos^2x+2\sin x\cos x=m^2\to \sin x\cos x=\dfrac{m^2-1}{2}$

    $A=\sin^3x+\cos^3x=(\sin x+\cos x)(\sin^2x+\cos^2x-\sin x\cos x)$

    $=(\sin x+\cos x)(1-\sin x\cos x)$

    $=m.\Big(1-\dfrac{m^2-1}{2}\Big)$

    $=m.\dfrac{2-m^2+1}{2}$ 

    $=\dfrac{3m-m^3}{2}$

    $B=\sin^4x+\cos^4x=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x$

    $=1-2(\sin x\cos x)^2$

    $=1-2.\dfrac{(m^2-1)^2}{4}=1-\dfrac{(m^2-1)^2}{2}$

    Bình luận

Viết một bình luận