cho tam giac ABC (AB { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " cho tam giac ABC (AB" (g.c.g)="" ->="" ahn="góc" nkc="90°" nh="" ⊥="" 7:09:09="" "url":="" "https:="" mtrend.vn="" cho-tam-giac-abc-ab-ac-goi-m-n-theo-thu-tu-la-trung-diem-ab-va-ac-tren-tia-doi-cua-tia-mn-lay-di-33="" #comment-99901",="" "author":="" "person",="" "url"="" author="" diemmy",="" "name":="" "diemmy"="" }="" ]="" <="" script="">
Giải thích các bước giải:
a, Xét ∆ANM và ∆CNP có
AN=NC
góc ANM = góc CNP (đối đỉnh)
MN=NP
=>∆ANM = ∆CNP (c – g – c)
b/ Xét ∆ANP và ∆CNM có
AN=NC
góc ANP= góc MNC (đối đỉnh)
MN=NP
=>∆ANP =∆CNM (c-g-c)
->AP=CM
c/ NK ∩ AB= H
Ta có: ∆ANM = ∆CNP (câu a)
=> góc HAN = góc NCK
Xét ∆ANH và ∆CNK có
góc ANH= góc CNK (đối đỉnh)
AN=NC
góc HAN = góc NCK (cmt)
=> ∆ANH=∆CNK (g.c.g)
-> góc AHN = góc NKC = 90°
-> NH ⊥ AB
=> Nk ⊥ AB