Cho tam giác ABC(AB>AC). Kẻ đường cao BM, CN.Chứng minh rằng:
a) tam giác ABM đồng dạng tam giác ACN
b) góc AMN= góc ABC
c) Trên cạnh AB lấy điểm K sao cho BK=AC. Gọi E là trung điểm BC, F là trung điểm AK. Chứng minh EF// tia phân giác Ax của góc BAC
Chỉ cần ý c thôi, ko cần vẽ hình. cảm ơn trc.
Giải
a) Xét ∆ABM và∆ ACN
Góc AMB=Góc ANC=90°
Vậy∆ABM ~ ∆ACN(g.g)
b. Vì ABM ~∆ACN nên.
AB/AC = AM/AN.
=>. AB/AM=AC/AN
Xét∆ANM và∆ ABC có
AB/AM=AC/AN(cmt)
GÓC. BAC. Là góc chung
Vậy ∆ANM~∆ABC(c.g.c)
=>. Góc AMN= góc ABC(2 góc tương ứng)
C) Ta có
BE=EC
KF=FA.
=>EF là đường trung bình của∆BKC
=> EF//AC