Cho tam giác ABC các đường cao BD CE cắt nhau tại h đường vuông góc với AB tại b và đường vuông góc với AC tại c cắt nhau ở k a gọi m là trung điểm của bc a chứng minh tam giác ADB đồng dạng tam giác AEC b chứng minh he* hc =HD*hb. c) chứng minh H,M,K thẳng hàng.
Đáp án:
Giải thích các bước giải:
Đáp án:
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.
a)Chứng minh tam giác ADB đồng dạng tam giác AEC
Xét tam giác ABD và tam giác ACE có
góc ABD= góc AEC (=90 độ)
góc A: chung
=> tam giác ABD đồng dạng tam giác AEC (g.g)
b) Cm :HE.HC=HD.HB
Xét tam giác HEB và tam giác HDC có
góc HEB= góc HDC (=90 độ)
góc EHB= góc DHC ( đối đỉnh)
=>tam giácHEB đồng dạng tam giác HDC(g.g)
=>HE/HD=HB/HC
<=> HE.HC= HD.HB
c) Cm: H,M,K thẳng hàng
Có BD vuông góc AC
CK vuông góc AC
=> BD song song CK hay BH song song CK
Có CE vuông góc AB
BK vuông góc AB
=> CE song song BK hay CH song song BK
Tứ giác BHCK có BH song song CK
CH song song BK
=> BHCK là hbh ( dhnb)
Mà M là trung điểm của đg chéo BC
=> M cũng là trung điểm của đg chéo HK
=> H,M,K thẳng hàng