Cho Tam giác ABC có A(-1;4) B(2;5), C(3;0).Tìm D thuộc đường thẳng (d): x-y+1=0 sao cho AD=5 05/12/2021 Bởi Bella Cho Tam giác ABC có A(-1;4) B(2;5), C(3;0).Tìm D thuộc đường thẳng (d): x-y+1=0 sao cho AD=5
Đáp án: \({\left[ {\begin{array}{*{20}{l}}{D\left( {\dfrac{{2 + \sqrt {34} }}{2};\dfrac{{4 + \sqrt {34} }}{2}} \right)}\\{D\left( {\dfrac{{2 – \sqrt {34} }}{2};\dfrac{{4 – \sqrt {34} }}{2}} \right)}\end{array}} \right.}\) Giải thích các bước giải: Do D∈(d) \(\begin{array}{*{20}{l}}{ \to D\left( {t;t + 1} \right)}\\{ \to \overrightarrow {AD} {\rm{ \;}} = \left( {t + 1;t – 3} \right)}\\{ \to \left| {\overrightarrow {AD} } \right| = \sqrt {{{\left( {t + 1} \right)}^2} + {{\left( {t – 3} \right)}^2}} }\\{ = \sqrt {2{t^2} – 4t + 10} }\\{Do:AD = 5}\\{ \to \sqrt {2{t^2} – 4t + 10} {\rm{ \;}} = 5}\\{ \to 2{t^2} – 4t + 10 = 25}\\{ \to 2{t^2} – 4t – 15 = 0}\\{{\rm{\;}} \to \left[ {\begin{array}{*{20}{l}}{t = \dfrac{{2 + \sqrt {34} }}{2}}\\{t = \dfrac{{2 – \sqrt {34} }}{2}}\end{array}} \right. \to \left[ {\begin{array}{*{20}{l}}{D\left( {\dfrac{{2 + \sqrt {34} }}{2};\dfrac{{4 + \sqrt {34} }}{2}} \right)}\\{D\left( {\dfrac{{2 – \sqrt {34} }}{2};\dfrac{{4 – \sqrt {34} }}{2}} \right)}\end{array}} \right.}\end{array}\) Bình luận
Đáp án:
\({\left[ {\begin{array}{*{20}{l}}
{D\left( {\dfrac{{2 + \sqrt {34} }}{2};\dfrac{{4 + \sqrt {34} }}{2}} \right)}\\
{D\left( {\dfrac{{2 – \sqrt {34} }}{2};\dfrac{{4 – \sqrt {34} }}{2}} \right)}
\end{array}} \right.}\)
Giải thích các bước giải:
Do D∈(d)
\(\begin{array}{*{20}{l}}
{ \to D\left( {t;t + 1} \right)}\\
{ \to \overrightarrow {AD} {\rm{ \;}} = \left( {t + 1;t – 3} \right)}\\
{ \to \left| {\overrightarrow {AD} } \right| = \sqrt {{{\left( {t + 1} \right)}^2} + {{\left( {t – 3} \right)}^2}} }\\
{ = \sqrt {2{t^2} – 4t + 10} }\\
{Do:AD = 5}\\
{ \to \sqrt {2{t^2} – 4t + 10} {\rm{ \;}} = 5}\\
{ \to 2{t^2} – 4t + 10 = 25}\\
{ \to 2{t^2} – 4t – 15 = 0}\\
{{\rm{\;}} \to \left[ {\begin{array}{*{20}{l}}
{t = \dfrac{{2 + \sqrt {34} }}{2}}\\
{t = \dfrac{{2 – \sqrt {34} }}{2}}
\end{array}} \right. \to \left[ {\begin{array}{*{20}{l}}
{D\left( {\dfrac{{2 + \sqrt {34} }}{2};\dfrac{{4 + \sqrt {34} }}{2}} \right)}\\
{D\left( {\dfrac{{2 – \sqrt {34} }}{2};\dfrac{{4 – \sqrt {34} }}{2}} \right)}
\end{array}} \right.}
\end{array}\)