Cho tam giác ABC, có các đường trung tuyến AB và CE cắt nhau tại G. Qua O thuộc cạnh BC vẽ CM//CE, ON//BD. MN cắt BD, CE theo thứ tự ở I và K
a) Gọi H là giao điểm của OM và BD. Tính tỉ số MH/MO
b) Chứng minh MI=1/3MN
c)Chứng minh MI=IK=KN
( Ko cần vẽ hình )
Giải thích các bước giải:
a) Xét ΔABC có AE = EB AD = DC
⇒ED là đường trung bình ΔABC
⇒ ED = 2 1 BC
⇔ED = 2 1 × 8 = 4 cm
ED//BC ⇒EDCB là hình thang
Lại có : EM = MB DN = NC
⇒MN là đường trung bình của hình thang EDCB
⇒MN = 2 ED + BC = 2 4 + 8 = 2 12 = 6 cm
Vậy MN = 6cm
b) Xét ΔBEDcó M là trung điểm BE ; MI // ED
⇒MI là dường trung bình ΔBED
⇒MI = 2 1 ED = 2 1 × 4 = 2 cm
Xét ΔCEDcó N là trung điểm CD ; NK // ED
⇒NK là đường trung bình ΔCED
⇒NK = 2 1 ED = 2 1 × 4 = 2 cm
Lại có : MI + IK + KN = MN
⇔2 + IK + 2 = 6
⇔IK = 2 cm
Vậy MI = IK = KN = 2cm