Cho tam giác ABC có N là trung điểm của AC . Trên tia đối của tia NB lấy điểm D sao cho ND=NB a) chứng minh tam giác AND=tam giác CNB b)kẻ AH vuông g

Cho tam giác ABC có N là trung điểm của AC . Trên tia đối của tia NB lấy điểm D sao cho ND=NB
a) chứng minh tam giác AND=tam giác CNB
b)kẻ AH vuông góc BN tại H ,CI vuông góc tại I .CM AD song song BC
c ) gọi M là trung điểm của AB . Trên tia đối của tia MC lấy điểm E sao cho EM=MC . CM A là trung điểm của DE

0 bình luận về “Cho tam giác ABC có N là trung điểm của AC . Trên tia đối của tia NB lấy điểm D sao cho ND=NB a) chứng minh tam giác AND=tam giác CNB b)kẻ AH vuông g”

  1. Đáp án:

     

    Giải thích các bước giải:

     a)

    Xét ∆AND và ∆CNB có

     AN = CN (vì N là trung điểm của AC)

     NB = NC (gt)

     góc AND = góc BNC (đối đỉnh)

    • ∆AND = ∆CNB
    Bình luận

Viết một bình luận