Cho tam giác ABC, M là trung điểm của BC. Kẻ BH, CK vuông góc với AM (H,K thuộc AM ).
a, CMR: BH // CK, BH=CK.
b,CMR: BK // CH, BK = CH.
c,Gọi E là trung điểm của BK, F là trung điểm của CH. CMR: E, M, F thẳng hàng .
d, CMR: tam giác AEF cân.
Cho tam giác ABC, M là trung điểm của BC. Kẻ BH, CK vuông góc với AM (H,K thuộc AM ).
a, CMR: BH // CK, BH=CK.
b,CMR: BK // CH, BK = CH.
c,Gọi E là trung điểm của BK, F là trung điểm của CH. CMR: E, M, F thẳng hàng .
d, CMR: tam giác AEF cân.
Đáp án:
Giải thích các bước giải:
a) Xét Δ B H M ; Δ C K M ΔBHM;ΔCKM có :
ˆ B H M = ˆ C K M ( = 90 o − g t )
BHM^=CKM^(=90o−gt)
B M = M C ( g t ) BM=MC(gt) ˆ H M B = ˆ K M C HMB^=KMC^ (đối đỉnh)
=> Δ B H M = Δ C K M ΔBHM=ΔCKM (cạnh huyền – góc nhọn)
=> ˆ H B M = ˆ K C M HBM^=KCM^ (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> BH // KC ( đ p c m ) BH // KC(đpcm)
Và từ Δ B H M = Δ C K M ΔBHM=ΔCKM (cmt)
=> B H = C K BH=CK (2 cạnh tương ứng)
b) Xét Δ H M C ; Δ K M B ΔHMC;ΔKMB có :
B M = M C ( g t )
BM=MC(gt) ˆ H M C = ˆ K M B HMC^=KMB^ (đối đỉnh)
H M = M K HM=MK (do Δ B H M = Δ C K M ΔBHM=ΔCKM -cmt)
=> Δ H M C ; Δ K M B ΔHMC;ΔKMB
=> Δ H M C = Δ K M B ΔHMC=ΔKMB (c.g.c)
=> ˆ H C M = ˆ K B M HCM^=KBM^ (2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> BK // CH ( đ p c m ) BK // CH (đpcm)
Có : Δ H M C = Δ K M B ΔHMC=ΔKMB (cmt)
=> B K = C H BK=CH (2 cạnh tương ứng)
c) Ta có : { H F = F C B E = E K {HF=FCBE=EK (gt)
Mà : B K = H C ( c m t ) BK=HC(cmt)
=> H F = F C = B E = E K HF=FC=BE=EK
Xét Δ B E M ; Δ F C M ΔBEM;ΔFCM có :
B M = M C ( g t ) BM=MC(gt) ˆ M B E = ˆ M C F ( s l t )
MBE^=MCF^(slt) B E = F C ( c m t ) BE=FC(cmt)
=> Δ B E M = Δ F C M ( c . g . c ) ΔBEM=ΔFCM(c.g.c)
=> E M = F M EM=FM(2 cạnh tương ứng)
=> M Là trung điểm của EF Do đó : E, ,M, F thẳng hàng
⇒ Chúp bn học giỏi ! Nếu bn thấy câu trả lời của sissf12 đúng hay và bổ ích đừng quên vote 5* , cảm ơn và câu trả lời hay nhất nha !