Cho tam giác ABC nhọn, đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại M và N. Gọi H là giao điểm của BN và CM
a/ Chứng Minh: H là trực tâm của tam giác ABC
b/ Gọi K là giao điểm của AH và BC. Chứng minh các tứ giác BMHK
c/ Chứng minh MC là tia phân giác của góc KMN
Đáp án:
Giải thích các bước giải:
) Chứng minh AH ┴ BC .
Vì ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC
Suy ra BMC = BNC = 90*. Do đó: Tam giác ABC có hai đường cao BN , CM cắt nhau tại H
nên H là trực tâm tam giác. Vậy AH ┴ BC.
b) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O)
OB = OM (bk đường tròn (O)) nên ΔBOM cân ở M.
Do đó: ^OMB = ^OBM (1)
ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = AH/2 Vậy ΔAME cân ở E.
Do đó: ^AME = ^MAE (2)
Từ (1) và (2) suy ra: OMB + AME = MBO + MAH. Mà MBO + MAH = 90* (vì AH ┴ BC )
Nên OMB + AME = 90*. Do đó ^EMO = 90*. Tức là ME┴OE Vậy ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
OM = ON và EM = EN nên OE là đường trung trực MN.
Do đó OE ┴ MN tại K và MK = MN/2
ΔEMO vuông ở M , MK ┴ OE nên ME. MO = MK . OE = MN/2.OE.
Suy ra: MN. OE = 2ME. MO.
Đáp án:
Giải thích các bước giải:
a) Chứng minh AH ┴ BC .
Vì ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC
Suy ra BMC = BNC = 90*. Do đó: Tam giác ABC có hai đường cao BN , CM cắt nhau tại H
nên H là trực tâm tam giác. Vậy AH ┴ BC.
b) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O)
OB = OM (bk đường tròn (O)) nên ΔBOM cân ở M.
Do đó: ^OMB = ^OBM (1)
ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = AH/2 Vậy ΔAME cân ở E.
Do đó: ^AME = ^MAE (2)
Từ (1) và (2) suy ra: OMB + AME = MBO + MAH. Mà MBO + MAH = 90* (vì AH ┴ BC )
Nên OMB + AME = 90*. Do đó ^EMO = 90*. Tức là ME┴OE Vậy ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
OM = ON và EM = EN nên OE là đường trung trực MN.
Do đó OE ┴ MN tại K và MK = MN/2
ΔEMO vuông ở M , MK ┴ OE nên ME. MO = MK . OE = MN/2.OE.
Suy ra: MN. OE = 2ME. MO.