cho tam giác ABC vg tại A có (AB>AC) đường cao AH trên nửa mặt phẳng bờ BC chứa điểm A , vẽ nửa đường tròn đường kính BH cắt AB tại E , vẽ nửa đường tròn đường kính CH cắt AC tại A
a) cmr : AFHE là hcn
b) tứ giác BEFC nội tiếp
c) AE . AB = AF . AC
d) cmr : EF là tiếp tuyến chung của hai đường tròn
giúp mk vs ạ
mk đag cần gấp á
helpppp meeeeee
Đáp án:
a)Ta có góc BEH =90 độ (góc nội tiếp chắn nửa đường tròn)
và góc FHC = 90 độ (góc nội tiếp chắn nửa đường tròn)
Xét tứ giác AFHE , ta có:
góc EAF =90 độ (tam giác ABC vuông tại A)
góc AEH =90 độ (cmt)
góc AFH=90 độ (cmt)
=> tứ giác AFHE là hình chữ nhật (tứ giác có 3 góc vuông)
b)Gọi I là giao điểm của AH và EF
Ta có: AH=EF (hcn AFHE) (1)
mà 2 đường chéo AH và EF cắt nhau tại I (vẽ thêm)
=>I là trung điểm của AH và EF (2)
từ (1) và (2)=> IE=IH=IA=IF
Ta có: góc IHF =góc ACH (phụ với góc HAC)
mà góc IHF = góc IFH (tam giác IHF cân tại I (IH=IF) )
=>góc ACH = góc IFH (cùng = góc IHF)
mà góc IFH= góc AEF (2 góc so le trong của AE song song HF(cùng vuông góc AC))
=>góc AEF =góc ACH=>tứ giác BEFC nội tiếp đường tròn
c)Gọi J là tâm của nửa đường tròn đường kính BH
và K là tâm của nửa đường tròn đường kính HC
Ta có: tam giác KFC cân tại K (KF=KC)
=>góc KFC = góc KCF mà góc KCF=góc IFH (cmt)
=>góc KFC =góc IFH (cùng =góc KCF)
mà góc KFC + góc HFK =90 độ (góc HFC =90 độ)
=>góc IFH + góc HFK =90 độ => góc IFK =90 độ
=>EF là tiếp tuyến của nửa (K) (I thuộc EF) (3)
Ta lại có: tam giác JEH cân tại J (JE=JH)
=> góc JEH =góc JHE
mà góc JHE = góc HCF ( 2 góc so le trong của HE song song CA ( cùng vuông góc AB) )
và góc HCF = góc AEF (cmt)
=>góc JEH= góc AEF
mà góc AEF + góc HEF = 90 độ (góc HEA = 90 độ)
=>góc JEH + góc HEF =90 độ => góc JEF = 90 độ
=>EF là tiếp tuyến của nửa (J) (4)
Từ (3) và (4) => EF là tiếp tuyến chung 2 nửa dường tròn dường kính BH và HC