cho tam giác ABC với A(2,-1) ,B(1,3) C(-2,-4).Tính các góc trong tam giác ABC giúp.em.với 31/10/2021 Bởi Gianna cho tam giác ABC với A(2,-1) ,B(1,3) C(-2,-4).Tính các góc trong tam giác ABC giúp.em.với
Giải thích các bước giải: Ta có: $AB=\sqrt{(1-2)^2+(3+1)^2}=\sqrt{17}$ $BC=\sqrt{(-2-1)^2+(-4-3)^2}=\sqrt{58}$ $CA=\sqrt{(-2-2)^2+(-4+1)^2}=5$ $\to \cos A=\dfrac{AB^2+AC^2-CB^2}{2AB.AC}=\dfrac{-8\sqrt{17}}{85}$ $\to \hat A\approx 112.8^o$ Lại có: $\cos B=\dfrac{BA^2+BC^2-AC^2}{2BA.BC}\approx 0.8$ $\to \hat B=\approx 37.2^o$ $\to \hat C=180^o-\hat A-\hat B\approx 34.5^o$ Bình luận
Giải thích các bước giải:
Ta có:
$AB=\sqrt{(1-2)^2+(3+1)^2}=\sqrt{17}$
$BC=\sqrt{(-2-1)^2+(-4-3)^2}=\sqrt{58}$
$CA=\sqrt{(-2-2)^2+(-4+1)^2}=5$
$\to \cos A=\dfrac{AB^2+AC^2-CB^2}{2AB.AC}=\dfrac{-8\sqrt{17}}{85}$
$\to \hat A\approx 112.8^o$
Lại có:
$\cos B=\dfrac{BA^2+BC^2-AC^2}{2BA.BC}\approx 0.8$
$\to \hat B=\approx 37.2^o$
$\to \hat C=180^o-\hat A-\hat B\approx 34.5^o$