cho tam giác ABC vuông tại A,BD là tia phân giác của góc B.Kẻ DH vuông góc BC(H thuộc BC).Gọi E là giao điểm của AB và HD.CMR
a.tam giác ABD=tam giác HBD
b.BD là đường trung trực của đoạn thẳng AH
c.AD
cho tam giác ABC vuông tại A,BD là tia phân giác của góc B.Kẻ DH vuông góc BC(H thuộc BC).Gọi E là giao điểm của AB và HD.CMR
a.tam giác ABD=tam giác HBD
b.BD là đường trung trực của đoạn thẳng AH
c.AD
Đáp án+Giải thích các bước giải:
a) Xét tam giác ABD vuông tại A và tam giác HBD vuông tại H
có: góc ABD = góc HBD (gt)
BD là cạnh chung
=> tam giác ABD = tam giác HBD ( cạnh huyền – góc nhọn)
b) ta có: tam giác ABD = tam giác HBD ( phần a)
=> AB = HB ( 2 cạnh tương ứng)
=> tam giác ABH cân tại B ( định lí tam giác cân)
mà BD là tia phân giác góc ABH (gt)
=> BD là đường trung trực của AH ( định lí)
c) ta có: tam giác ABD = tam giác HBD ( phần a)
=> AD = HD ( 2 cạnh tương ứng) (1)
Xét tam giác CDH vuông tại H
có: HD < DC ( quan hệ cạnh huyền với cạnh góc vuông)(2)
Từ(1); (2) => AD<DC
d) Áp dụng định lý Pytago có :
AB²+AC²=BC²
⇒8²+6²=BC²
⇒BC²=100
⇒BC=10cm
e) ( O là điểm nào vậy ạ ? )
CHÚC BẠN HỌC TỐT ~
XIN TLHN !
Bạn ơi mình hỏi O ở đâu