Cho tam giác ABC vuông tại A có AC = 5 cm , trung tuyến AM = 3.5 cm . Tính các cạnh của tam giác và hai đường trung tuyến còn lại

Cho tam giác ABC vuông tại A có AC = 5 cm , trung tuyến AM = 3.5 cm . Tính các cạnh của tam giác và hai đường trung tuyến còn lại

0 bình luận về “Cho tam giác ABC vuông tại A có AC = 5 cm , trung tuyến AM = 3.5 cm . Tính các cạnh của tam giác và hai đường trung tuyến còn lại”

  1. Ta có: BC=2AM

    ⇒BC=2.3,5=7 (cm)

    Theo định lý Pi-ta-go, ta có:

    BC²=AB²+AC²

    ⇒AB²=BC²-AC²

    ⇒AB²=7²-5²

    ⇒AB²=24

    ⇒AB=√24=2√6 (cm)

    Ta có: MB=MC=AM=3,5 (cm)

    Bình luận
  2. Giải:

    Ta có tam giác ABC vuông tại A

    Mà AM là đường trung tuyến ứng với cạnh huyền BC

    Nên AM=MC=BM=3,5(cm)AM=MC=BM=3,5(cm)

    BC=2MC=2.3,5=7(cm)⇔BC=2MC=2.3,5=7(cm)

    Áp dụng định lý Pitago vào tam giác vuông ABC, có:

    AB2+AC2=BC2AB2+AC2=BC2

    AB2=BC2AC2⇔AB2=BC2−AC2

    AB=BC2AC2−−−−−−−−−−√⇔AB=BC2−AC2

    AB=7252−−−−−−√=26–√(cm)⇔AB=72−52=26(cm)

     BN là đường trung tuyến ứng với cạnh góc vuông AC

    AN=12AC=12.5=2,5(cm)⇔AN=12AC=12.5=2,5(cm)

    Áp dụng định lý Pitago vào tam giác vuông ABN, có:

    AB2+AN2=BN2AB2+AN2=BN2

    (26–√)2+2,52=BN2⇔(26)2+2,52=BN2

    (26–√)2+2,52−−−−−−−−−−−−√=BN⇔(26)2+2,52=BN

    BN=5,5(cm)⇔BN=5,5(cm)

    Vậy …

     

    Bình luận

Viết một bình luận